【題目】如圖,正方形ABCD邊長(zhǎng)為4,點(diǎn)O在對(duì)角線DB上運(yùn)動(dòng)(不與點(diǎn)B,D重合),連接OA,作OPOA,交直線BC于點(diǎn)P

1)判斷線段OA,OP的數(shù)量關(guān)系,并說明理由.

2)當(dāng)OD時(shí),求CP的長(zhǎng).

3)設(shè)線段DO,OP,PC,CD圍成的圖形面積為S1,△AOD的面積為S2,求S1S2的最大值.

【答案】1OAOP,理由見解析;(2PC2;(3)當(dāng)x2時(shí),S1S2有最大值是4

【解析】

1)證明四邊形OGBH是正方形,得BGBH,∠GOH90°,再證明AGO≌△PHOASA),則OAOP;

2)如圖2,作輔助線,證明ODQ是等腰直角三角形,得OQDQ1,證明ADO≌△CDOSAS),可得PC的長(zhǎng);

3)如圖3,作輔助線,構(gòu)建三角形全等,設(shè)OHx,則DHx,CHOG4x,PC2x,根據(jù)SAODSCOD,則S1S2SPOC=﹣x2+4x,配方后可得結(jié)論.

解:(1OAOP,理由是:

如圖1,過OOGABG,過OOHBCH,

∵四邊形ABCD是正方形,

∴∠ABO=∠CBO,ABBC

OGOH,

∵∠OGB=∠GBH=∠BHO90°,

∴四邊形OGBH是正方形,

BGBH,∠GOH90°

∵∠AOP=∠GOH90°,

∴∠AOG=∠POH,

∴△AGO≌△PHOASA),

OAOP;

2)如圖2,過OOQCDQ,過OOHBCH,連接OC,

∴∠OQD90°,

∵∠ODQ45°,

∴△ODQ是等腰直角三角形,

OD,

OQDQ1,

ADCD,∠ADO=∠CDO,ODOD,

∴△ADO≌△CDOSAS),

AOOCOP,

OHPC,

PHCHOQ1

PC2;

3)如圖3,連接OC,過OOGBCGOHCDH,

設(shè)OHx,則DHx,CHOG4x,PC2x,

由(2)知:AOD≌△COD

SAODSCOD,

S1S2S1SCODSPOC=﹣x2+4x=﹣(x22+4,

當(dāng)x2時(shí),S1S2有最大值是4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中,CACB,<∠ACB≤90°,點(diǎn)M、N分別在邊CA,CB上(不與端點(diǎn)重合),BNAM,射線AGBCBM延長(zhǎng)線于點(diǎn)D,點(diǎn)E在直線AN上,EAED

1)(觀察猜想)如圖1,點(diǎn)E在射線NA上,當(dāng)∠ACB45°時(shí),①線段BMAN的數(shù)量關(guān)系是   ; ②∠BDE的度數(shù)是   

2)(探究證明)如圖2點(diǎn)E在射線AN上,當(dāng)∠ACB30°時(shí),判斷并證明線段BMAN的數(shù)量關(guān)系,求∠BDE的度數(shù);

3)(拓展延伸)如圖3,點(diǎn)E在直線AN上,當(dāng)∠ACB60°時(shí),AB3,點(diǎn)NBC邊上的三等分點(diǎn),直線ED與直線BC交于點(diǎn)F,請(qǐng)直接寫出線段CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,拋物線yax2+bx+c過點(diǎn)A(﹣1,0),B30),C0,3),點(diǎn)P是直線BC上方拋物線上的一動(dòng)點(diǎn),PEy軸,交直線BC于點(diǎn)E連接AP,交直線BC于點(diǎn) D

1)求拋物線的函數(shù)表達(dá)式;

2)當(dāng)AD2PD時(shí),求點(diǎn)P的坐標(biāo);

3)求線段PE的最大值;

4)當(dāng)線段PE最大時(shí),若點(diǎn)F在直線BC上且∠EFP2ACO,直接寫出點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有邊長(zhǎng)為a的正方形卡片①,邊長(zhǎng)為b的正方形卡片②,兩鄰邊長(zhǎng)分別為a,b的矩形卡片③若干張.

1)請(qǐng)用2張卡片①,1張卡片②,3張卡片③拼成一個(gè)矩形,在方框中畫出這個(gè)矩形的草圖;

2)請(qǐng)結(jié)合拼圖前后面積之間的關(guān)系寫出一個(gè)等式;

3)小明想用類似方法解釋多項(xiàng)式乘法(a+3b)(2a+2b)的結(jié)果,那么需用卡片①______張,卡片②______張,卡片③______張.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家具商場(chǎng)計(jì)劃購(gòu)進(jìn)某種餐桌、餐椅進(jìn)行銷售,有關(guān)信息如表:

原進(jìn)價(jià)(元/張)

零售價(jià)(元/張)

成套售價(jià)(元/套)

餐桌

a

270

500

餐椅

a110

70

已知用600元購(gòu)進(jìn)的餐桌數(shù)量與用160元購(gòu)進(jìn)的餐椅數(shù)量相同.

1)求表中a的值;

2)若該商場(chǎng)購(gòu)進(jìn)餐椅的數(shù)量是餐桌數(shù)量的5倍還多20張,且餐桌和餐椅的總數(shù)量不超過200張.該商場(chǎng)計(jì)劃將一半的餐桌成套(一張餐桌和四張餐椅配成一套)銷售,其余餐桌、餐椅以零售方式銷售.請(qǐng)問怎樣進(jìn)貨,才能獲得最大利潤(rùn)?最大利潤(rùn)是多少?

3)由于原材料價(jià)格上漲,每張餐桌和餐椅的進(jìn)價(jià)都上漲了10元,但銷售價(jià)格保持不變.商場(chǎng)購(gòu)進(jìn)了餐桌和餐椅共200張,應(yīng)怎樣安排成套銷售的銷售量(至少10套以上),使得實(shí)際全部售出后,最大利潤(rùn)與(2)中相同?請(qǐng)求出進(jìn)貨方案和銷售方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖AB⊙O的直徑,PA⊙O相切于點(diǎn)A,BP⊙O相交于點(diǎn)DC⊙O上的一點(diǎn),分別連接CBCD,∠BCD60°.

(1)求∠ABD的度數(shù);

(2)AB6,求PD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】永康市某校在課改中,開設(shè)的選修課有:籃球,足球,排球,羽毛球,乒乓球,學(xué)生可根據(jù)自己的愛好選修一門,李老師對(duì)九(1)班全班同學(xué)的選課情況進(jìn)行調(diào)查統(tǒng)計(jì),制成了兩幅不完整的統(tǒng)計(jì)圖(如圖).

1)該班共有學(xué)生   人,并補(bǔ)全條形統(tǒng)計(jì)圖;

2)求籃球所在扇形圓心角的度數(shù);

3)九(1)班班委4人中,甲選修籃球,乙和丙選修足球,丁選修排球,從這4人中任選2人,請(qǐng)你用列表或畫樹狀圖的方法,求選出的2人中恰好為1人選修籃球,1人選修足球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).

1)求A、B、C的坐標(biāo);

2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過點(diǎn)Mx軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)PPQ∥AB交拋物線于點(diǎn)Q,過點(diǎn)QQN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQMN的周長(zhǎng)最大時(shí),求△AEM的面積;

3)在(2)的條件下,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),連接DQ.過拋物線上一點(diǎn)Fy軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).FG=DQ,求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,頂點(diǎn)坐標(biāo)為(2,﹣1)的拋物線yax2+bx+ca0)與y軸交于點(diǎn)C03),與x軸交于AB兩點(diǎn).

1)求拋物線的表達(dá)式;

2)設(shè)拋物線的對(duì)稱軸與直線BC交于點(diǎn)D,連接AC、AD,求△ACD的面積;

3)點(diǎn)E為直線BC上一動(dòng)點(diǎn),過點(diǎn)Ey軸的平行線EF,與拋物線交于點(diǎn)F.問是否存在點(diǎn)E,使得以DE、F為頂點(diǎn)的三角形與△BCO相似?若存在,求點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案