【題目】如圖,在中,對(duì)角線交于點(diǎn),,點(diǎn)分別是的中點(diǎn),交于點(diǎn).有下列4個(gè)結(jié)論:①;②;③;④,其中說法正確的有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
【答案】D
【解析】
由平行四邊形性質(zhì)和等腰三角形“三線合一”即可得ED⊥CA;根據(jù)三角形中位線定理可得EF=AB;由直角三角形斜邊上中線等于斜邊一半可得EG=CD,即可得;證明△EFH≌△GDH,即可判斷③和④
解: ∵四邊形ABCD是平行四邊形,
∴OA=OC,OB=OD,AD=BC,AD//BC,AB=CD,AB//CD,
∵BD=2AD,
∴OD=AD,
∵點(diǎn)E為OA中點(diǎn),
∴ED⊥CA,故①正確;
∵E,F,G分別是OA,OB,CD的中點(diǎn),
∴EF//AB,EF=AB.
∵∠CED=90°,CG=DG=CD,
∴EG=CD,
∴EF=EG,故②正確;
∵EF//CD,AB//CD,
∴EF//CD,
∴∠EFH=∠GDH, ∠FEH=∠DGH,
∵EF=DG
∴△EFH≌△GDH,
∴FH=HD,
即,故③正確;
∵△EFH≌△GDH,
∴S△EFH=S△GDH,
∴S△EFD=S△EDG,
∵S△EDG=S△CED,
∴S△EFD =S△CED,故④正確;
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABC>∠ADC,且∠BAD 的平分線 AE 與∠BCD 的平分線 CE 交于點(diǎn) E,則∠AEC與∠ADC、∠ABC 之間存在的等量關(guān)系是( )
A. ∠AEC=∠ABC﹣2∠ADC B. ∠AEC=
C. ∠AEC= ∠ABC﹣∠ADC D. ∠AEC=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AC與BD相交于點(diǎn)O,AB=AC,延長(zhǎng)BC到點(diǎn)E,使CE=BC,連接AE,分別交BD、CD于點(diǎn)F、G.
(1)求證:△ADB≌△CEA;
(2)若BD=9,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖所示,在直角坐標(biāo)系中,第一次將△OAB變換成△OA1B1,第二次將△OA1B1變換成△OA2B2,第三次將△OA2B2變換成△OA3B3, 已知A(1,3),A1 (2,3), A2 (4,3), A3 (8,3),B(2,0), B1 (4,0), B2 (8,0), B3 (16,0),觀察每次變換前后的三角形有何變化,找出規(guī)律,按此變換規(guī)律將△OA3B3變換成△OAnBn, ,則An的坐標(biāo)是_______ ,Bn的坐標(biāo)是_________ .
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCE的邊長(zhǎng)為1,點(diǎn)M、N分別在BC、CD上,且△CMN的周長(zhǎng)為2,則△MAN的面積的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(1,2),
(1)寫出點(diǎn)A、B的坐標(biāo):A(_____,_____)、B(_____,_____);
(2)將△ABC先向左平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到△A′B′C′,寫出A′、B′、C′三點(diǎn)坐標(biāo);
(3)求△ABC的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系中,四邊形ABCD是長(zhǎng)方形,∠A=∠B=∠C=∠D=90°,AB∥CD,AB=CD=8cm,AD=BC=6cm,D點(diǎn)與原點(diǎn)重合,坐標(biāo)為(0,0)
(1)寫出點(diǎn)B的坐標(biāo);
(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā)以每秒3個(gè)單位長(zhǎng)度的速度向終點(diǎn)B勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā)以每秒4個(gè)單位長(zhǎng)度的速度沿射線CD方向勻速運(yùn)動(dòng),若P,Q兩點(diǎn)同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t,當(dāng)t為何值時(shí),PQ∥BC;
(3)在Q的運(yùn)行過程中,當(dāng)Q運(yùn)動(dòng)到什么位置時(shí),使△ADQ的面積為9,求此時(shí)Q點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形ABCD的對(duì)角線相交于點(diǎn)O,延長(zhǎng)AB至點(diǎn)E,使BE=AB,連結(jié)CE.
(1)求證:BD=EC;
(2)若AC=2, , 求菱形ABCD的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com