【題目】如圖,直線AB、CD相交于點(diǎn)O,∠AOC=30°,半徑為1cm的⊙P的圓心在射線OA上,開始時(shí),PO=6cm,如果⊙P以1cm/秒的速度沿由A向B的方向移動(dòng),那么當(dāng)⊙P的運(yùn)動(dòng)時(shí)間t(秒)滿足什么條件時(shí),⊙P與直線CD相交?
【答案】當(dāng)4<t<8時(shí),圓P與直線CD相交.
【解析】試題分析:首先分析相切時(shí)的數(shù)量關(guān)系,則點(diǎn)P到CD的距離應(yīng)是1,根據(jù)30°所對的直角邊是斜邊的一半,得OP=2;那么當(dāng)點(diǎn)P在OA上時(shí),需要運(yùn)動(dòng)(6-2)÷1=4秒;當(dāng)點(diǎn)P在OB上時(shí),需要運(yùn)動(dòng)(6+2)÷1=8秒.因?yàn)樵谶@兩個(gè)切點(diǎn)之間的都是相交,所以4<t<8.
試題解析: ∵OP=6cm,
∴當(dāng)點(diǎn)P在OA上時(shí),需要運(yùn)動(dòng)(6-2)÷1=4秒,此時(shí)⊙P與CD相切;
當(dāng)點(diǎn)P在OB上時(shí),需要運(yùn)動(dòng)(6+2)÷1=8秒,此時(shí)⊙P與CD相切;
∵在這兩個(gè)切點(diǎn)之間時(shí),⊙P與CD都是相交的,
∴4<t<8.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市自開展“學(xué)習(xí)新思想,做好接班人”主題閱讀活動(dòng)以來,受到各校的廣泛關(guān)注和同學(xué)們的積極響應(yīng),某校為了解全校學(xué)生主題閱讀的情況,隨機(jī)抽查了部分學(xué)生在某一周主題閱讀文章的篇數(shù),并制成下列統(tǒng)計(jì)圖表.
某校抽查的學(xué)生文章閱讀的篇數(shù)統(tǒng)計(jì)表
文章閱讀的篇數(shù)(篇) | 3 | 4 | 5 | 6 | 7及以上 |
人數(shù)(人) | 20 | 28 | m | 16 | 12 |
請根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問題:
(1)求被抽查的學(xué)生人數(shù)和的值;
(2)求本次抽查的學(xué)生文章閱讀篇數(shù)的中位數(shù)和眾數(shù);
(3)若該校共有800名學(xué)生,根據(jù)抽查結(jié)果估計(jì)該校學(xué)生在這一周內(nèi)文章閱讀的篇數(shù)為4篇的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知 a,b,c 分別是△ABC 的三邊長.
(1)分解因式:①ac﹣bc= ,②﹣a2+2ab﹣b2= ;
(2)若 ac﹣bc=﹣a2+2ab﹣b2,試判斷△ABC 的形狀;并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖 1,O 是等邊三角形 ABC 內(nèi)一點(diǎn),連接 OA,OB,OC,且 OA=3,OB=4,OC=5,將△BAO 繞點(diǎn) B 順時(shí)針旋轉(zhuǎn)后得到△BCD,連接 OD.
填空:①旋轉(zhuǎn)角為 °;②線段 OD 的長是 ;③∠BDC= °;
(2)如圖 2,O 是△ABC 內(nèi)一點(diǎn),且∠ABC=90°,BA=BC. 連接 OA,OB,OC,將△BAO 繞點(diǎn) B 順時(shí)針旋轉(zhuǎn)后得到△BCD,連接 OD.當(dāng) OA,OB,OC 滿足什么條件時(shí),∠BDC=135°?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用直接開平方法解方程:
(1) 4(x-2)2-36=0;
(2) x2+6x+9=25;
(3) 4(3x-1)2-9(3x+1)2=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線,
(1)如圖1,點(diǎn)在直線上的左側(cè),直接寫出,和之間的數(shù)量關(guān)系是 .
(2)如圖2,點(diǎn)在直線的左側(cè),,分別平分,,直接寫出和的數(shù)量關(guān)系是 .
(3)如圖3,點(diǎn)在直線的右側(cè),仍平分,,那么和有怎樣的數(shù)量關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC的頂點(diǎn)A,C的坐標(biāo)分別為(-4,5),(-1,3).
(1)請?jiān)诰W(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;
(2)將△ABC平移至△DEF,使得A、B、C的對應(yīng)點(diǎn)依次是D、E、F,已知D(2,3),請?jiān)诰W(wǎng)格中作出△DEF;
(3)若Q(a,b)是△DEF內(nèi)一點(diǎn),則△ABC內(nèi)點(diǎn)Q的對應(yīng)點(diǎn)點(diǎn)P的坐標(biāo)是 (用a、b表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2 cm,△PMN是一塊直角三角板(∠N=30°),PM>2 cm,PM與BC均在直線l上,開始時(shí)M點(diǎn)與B點(diǎn)重合,將三角板向右平行移動(dòng),直至M點(diǎn)與C點(diǎn)重合為止.設(shè)BM=x cm,三角板與正方形重疊部分的面積為y cm2.
下列結(jié)論:
①當(dāng)0≤x≤時(shí),y與x之間的函數(shù)關(guān)系式為y= x2;
②當(dāng)時(shí),y與x之間的函數(shù)關(guān)系式為y=2x-;
③當(dāng)MN經(jīng)過AB的中點(diǎn)時(shí),y= (cm2);
④存在x的值,使y= S正方形ABCD(S正方形ABCD表示正方形ABCD的面積).
其中正確的是______(寫出所有正確結(jié)論的序號(hào)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com