【題目】如圖,AB是⊙O的直徑,AC平分∠DAB交⊙O于點(diǎn)C,過點(diǎn)C的直線垂直于AD交AB的延長線于點(diǎn)P,弦CE交AB于點(diǎn)F,連接BE.
(1)求證:PD是⊙O的切線;
(2)若PC=PF,試證明CE平分∠ACB.
【答案】(1)詳見解析;(2)詳見解析.
【解析】
(1)連接OC,如圖,先證明∠2=∠3得到OC∥AD,然后利用平行線的性質(zhì)得到OC⊥CD,從而根據(jù)切線的判定定理得到PD是⊙O的切線;
(2)先證明∠1=∠PCB,再根據(jù)等腰三角形的性質(zhì)得∠PCF=∠PFC,然后利用∠PCF=∠PCB+∠BCF,∠PFC=∠1+∠ACF,從而可判斷∠BCF=∠ACF.
證明:(1)連接OC,如圖,
∵AC平分∠DAB,
∴∠1=∠2,
∵OA=OC,
∴∠1=∠3,
∴∠2=∠3,
∴OC∥AD,
∵AD⊥CD,
∴OC⊥CD,
∴PD是⊙O的切線;
(2)∵OC⊥PC,
∴∠PCB+∠BCO=90°,
∵AB為直徑,
∴∠ACB=90°,即∠3+∠BCO,
∴∠3=∠PCB,
而∠1=∠3,
∴∠1=∠PCB,
∵PC=PF,
∴∠PCF=∠PFC,
而∠PCF=∠PCB+∠BCF,∠PFC=∠1+∠ACF,
∴∠BCF=∠ACF,
即CE平分∠ACB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,E為CD的中點(diǎn),AE的垂直平分線分別交AD,BC及AB的延長線于點(diǎn)F,G,H,連接HE,HC,OD,連接CO并延長交AD于點(diǎn)M.則下列結(jié)論中:
①FG=2AO;②OD∥HE;③;④2OE2=AHDE;⑤GO+BH=HC
正確結(jié)論的個(gè)數(shù)有( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,AC是對(duì)角線,今有較大的直角三角板,一邊始終經(jīng)過點(diǎn)B,直角頂點(diǎn)P在射線AC上移動(dòng),另一邊交DC于點(diǎn)Q.
(1)如圖①,當(dāng)點(diǎn)Q在DC邊上時(shí),猜想并寫出PB與PQ所滿足的數(shù)量關(guān)系,并加以證明;
(2)如圖②,當(dāng)點(diǎn)Q落在DC的延長線上時(shí),猜想并寫出PB與PQ滿足的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,點(diǎn)E為AB的中點(diǎn).
(1)求證:△ADC∽△ACB.
(2)若AD=2,AB=3,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、C,與AB交于點(diǎn)D.
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)P為線段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動(dòng)點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達(dá)式;
②當(dāng)S最大時(shí),在拋物線y=﹣x2+bx+c的對(duì)稱軸l上,若存在點(diǎn)F,使△DFQ為直角三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的面積為28,對(duì)角線交于點(diǎn);以、為鄰邊作平行四邊形,對(duì)角線交于點(diǎn);以、為鄰邊作平行四邊形;…依此類推,則平行四邊形的面積為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是△ABC外接圓上的動(dòng)點(diǎn),且B,D位于AC的兩側(cè),DE⊥AB,垂足為E,DE的延長線交此圓于點(diǎn)F.BG⊥AD,垂足為G,BG交DE于點(diǎn)H,DC,F(xiàn)B的延長線交于點(diǎn)P,且PC=PB.
(1)求證:BG∥CD;
(2)設(shè)△ABC外接圓的圓心為O,若AB=DH,∠OHD=80°,求∠BDE的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的兩邊長AB=18cm,AD=4cm,點(diǎn)P、Q分別從A、B同時(shí)出發(fā),P在邊AB上沿AB方向以每秒2cm的速度勻速運(yùn)動(dòng),Q在邊BC上沿BC方向以每秒1cm的速度勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為x秒,△PBQ的面積為y(cm2).
(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求△PBQ的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,,是邊上一點(diǎn),連接,將沿翻折,點(diǎn)的對(duì)應(yīng)點(diǎn)是,連接,當(dāng)是直角三角形時(shí),則的值是________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com