(2012•東莞)如圖,在矩形紙片ABCD中,AB=6,BC=8.把△BCD沿對角線BD折疊,使點C落在C′處,BC′交AD于點G;E、F分別是C′D和BD上的點,線段EF交AD于點H,把△FDE沿EF折疊,使點D落在D′處,點D′恰好與點A重合.
(1)求證:△ABG≌△C′DG;
(2)求tan∠ABG的值;
(3)求EF的長.
分析:(1)根據(jù)翻折變換的性質(zhì)可知∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,故可得出結(jié)論;
(2)由(1)可知GD=GB,故AG+GB=AD,設AG=x,則GB=8-x,在Rt△ABG中利用勾股定理即可求出AG的長,進而得出tan∠ABG的值;
(3)由△AEF是△DEF翻折而成可知EF垂直平分AD,故HD=
1
2
AD=4,再根據(jù)tan∠ABG即可得出EH的長,同理可得HF是△ABD的中位線,故可得出HF的長,由EF=EH+HF即可得出結(jié)論.
解答:(1)證明:∵△BDC′由△BDC翻折而成,
∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,
∴∠ABG=∠ADE,
在△ABG與△C′DG中,
∠BAD=∠C′
AB=C′D
∠ABG=∠ADC′
,
∴△ABG≌△C′DG;

(2)解:∵由(1)可知△ABG≌△C′DG,
∴GD=GB,
∴AG+GB=AD,設AG=x,則GB=8-x,
在Rt△ABG中,
∵AB2+AG2=BG2,即62+x2=(8-x)2,解得x=
7
4
,
∴tan∠ABG=
AG
AB
=
7
4
6
=
7
24
;

(3)解:∵△AEF是△DEF翻折而成,
∴EF垂直平分AD,
∴HD=
1
2
AD=4,
∴tan∠ABG=tan∠ADE=
7
24
,
∴EH=HD×
7
24
=4×
7
24
=
7
6

∵EF垂直平分AD,AB⊥AD,
∴HF是△ABD的中位線,
∴HF=
1
2
AB=
1
2
×6=3,
∴EF=EH+HF=
7
6
+3=
25
6
點評:本題考查的是翻折變換、全等三角形的判定與性質(zhì)、矩形的性質(zhì)及解直角三角形,熟知折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等是解答此題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•東莞)如圖,小山崗的斜坡AC的坡度是tanα=
34
,在與山腳C距離200米的D處,測得山頂A的仰角為26.6°,求小山崗的高AB(結(jié)果取整數(shù):參考數(shù)據(jù):sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•東莞)如圖,直線y=2x-6與反比例函數(shù)y=
kx
(x>0)
的圖象交于點A(4,2),與x軸交于點B.
(1)求k的值及點B的坐標;
(2)在x軸上是否存在點C,使得AC=AB?若存在,求出點C的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•東莞)如圖,拋物線y=
1
2
x2-
3
2
x-9與x軸交于A、B兩點,與y軸交于點C,連接BC、AC.
(1)求AB和OC的長;
(2)點E從點A出發(fā),沿x軸向點B運動(點E與點A、B不重合),過點E作直線l平行BC,交AC于點D.設AE的長為m,△ADE的面積為s,求s關(guān)于m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)在(2)的條件下,連接CE,求△CDE面積的最大值;此時,求出以點E為圓心,與BC相切的圓的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•東莞)如圖,在△ABC中,AB=AC,∠ABC=72°.
(1)用直尺和圓規(guī)作∠ABC的平分線BD交AC于點D(保留作圖痕跡,不要求寫作法);
(2)在(1)中作出∠ABC的平分線BD后,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•東莞)如圖,在?ABCD中,AD=2,AB=4,∠A=30°,以點A為圓心,AD的長為半徑畫弧交AB于點E,連接CE,則陰影部分的面積是
3-
1
3
π
3-
1
3
π
(結(jié)果保留π).

查看答案和解析>>

同步練習冊答案