【題目】把兩個全等的直角三角板ABCEFG疊放在一起,使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合,其中∠B=∠F30°,斜邊ABEF長均為4.

(1) EGAC于點K,GFBC于點H時(如圖①),求GHGK的值.

(2) 現(xiàn)將三角板EFG由圖①所示的位置繞O點沿逆時針方向旋轉,旋轉角α滿足條件:α<30°(如圖②),EGAC于點K ,GFBC于點HGHGK的值是否改變?證明你發(fā)現(xiàn)的結論;

3)三角板EFG由圖①所示的位置繞O點逆時針旋轉一周,是否存在某位置使BFG是等腰三角形,若存在,請直接寫出相應的旋轉角α(精確到0.1°);若不存在,說明理由.

【答案】(1) GHGK=;(2)不變,GHGK=GNGM=;(3)存在,30°、90°、133.2°或346.8°.

【解析】

1)根據(jù)30°的直角三角形的三邊關系,利用已知條件和勾股定理可以求出直角三角形的三邊長度,利用三角形的中位線可以求出GK,和GH的值,可以求出其比值.
2)作GMACM,GNBCN,利用三角形相似可以求出GHGK的比值不變.
3)三角板EFG由圖①所示的位置繞O點逆時針旋轉一周,存在某位置使△BFG是等腰三角形,相應的旋轉角α為:30°、90°、133.2°346.8°.

1)∵∠ACB=EGF=90°,∠B=F=30°
AC=ABEG=EF
AB=EF=4
AC=EG=2,在RtACBRtEGF中,由勾股定理得
BC=GF=2

GEAC,GFBC
GEBCGFAC
GAB的中點
KH分別是ACCB的中點
GK,GHABC的中位線
GK=BC=GH=AC=1
GHGK=1;

2)不變,
理由如下:作GMACMGNBCN,
∴∠GMC=GNH=90°由旋轉的性質可知:
2=1
∴△GMK∽△GNH

GNGM=1

GHGK=1

∴旋轉角α滿足條件:α30°時,GHGK的值比值不變;

3)三角板EFG由圖①所示的位置繞O點逆時針旋轉一周,存在某位置使△BFG是等腰三角形,相應的旋轉角α為:30°90°、133.2°346.8°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB的直徑,AC于點A,點E上一點,且,連CEBD于點D

求證:CD的切線;

ADBE交于點F,的半徑為2,當點FAD中點時,求BD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線過點,頂點為M點.

1)求該拋物線的解析式;

2)試判斷拋物線上是否存在一點P,使∠POM90.若不存在,說明理由;若存在,求出P點的坐標;

3)試判斷拋物線上是否存在一點K,使∠OMK90,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,,于點H,點DAH上,且,連接BD

如圖1,將繞點H旋轉,得到B、D分別與點E、F對應,連接AE,當點F落在AC上時不與C重合,求AE的長;

如圖2,是由繞點H逆時針旋轉得到的,射線CFAE相交于點G,連接GH,試探究線段GHEF之間滿足的等量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的頂點AC分別在x、y軸的正半軸上,頂點B的坐標為(42).點M是邊BC上的一個動點(不與B、C重合),反比例函數(shù)y(k0,x0)的圖象經(jīng)過點M且與邊AB交于點N,連接MN

(1)當點M是邊BC的中點時.

求反比例函數(shù)的表達式;

求△OMN的面積;

(2)在點M的運動過程中,試證明:是一個定值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】國家規(guī)定中小學生每天在校體育活動時間不低于1小時.為此,某市就你每天在校體育活動時間是多少的問題隨機調查了轄區(qū)內(nèi)300名初中學生.根據(jù)調查結果繪制成的統(tǒng)計圖(部分)如圖所示,其中分組情況是:

A組:B組:

C組:D組:

請根據(jù)上述信息解答下列問題:

(1)C組的人數(shù)是;

(2)本次調查數(shù)據(jù)的中位數(shù)落在組內(nèi);

(3)若該轄區(qū)約有24 000名初中學生,請你估計其中達國家規(guī)定體育活動時間的人約有多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對非負實數(shù)x“四舍五入到個位的值記為< x >,即已知n為正整數(shù),如果n≤xn,那么< x >n.例如:< 0 >< 0.48 >0,< 0.64 >< 1.493 >1,< 2 >2,< 3.5 >< 4.12 >4,則滿足方程< x >的非負實數(shù)x的值為____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=3x﹣3分別交x軸、y軸于A、B兩點,拋物線y=+bx+c經(jīng)過A、B兩點,點C是拋物線與x軸的另一個交點,該拋物線的對稱軸與x軸交于點E.

(1)直接寫出拋物線的解析式為 ;

(2)以點E為圓心的E與直線AB相切,求E的半徑;

(3)連接BC,點P是第三象限內(nèi)拋物線上的動點,連接PE交線段BC于點D,當CED為直角三角形時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B兩地相距90km,甲騎摩托車由A地出發(fā),去B地辦事,甲出發(fā)的同時,乙騎自行車同時由B地出發(fā)沿著同一條道路前往A地,甲辦完事后原速返回A地,結果比乙早到0.5小時.甲、乙兩人離A地距離ykm)與時間xh)的函數(shù)關系圖像如圖所示.下列說法:①.a=3.5,b=4;甲走的全路程是90km;③乙的平均速度是22.5km/h;.④甲在B地辦事停留了0.5小時.其中正確的說法有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案