【題目】把兩個全等的直角三角板ABC和EFG疊放在一起,使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合,其中∠B=∠F=30°,斜邊AB和EF長均為4.
(1)當 EG⊥AC于點K,GF⊥BC于點H時(如圖①),求GH:GK的值.
(2) 現(xiàn)將三角板EFG由圖①所示的位置繞O點沿逆時針方向旋轉,旋轉角α滿足條件:0°<α<30°(如圖②),EG交AC于點K ,GF交BC于點H,GH:GK的值是否改變?證明你發(fā)現(xiàn)的結論;
(3)三角板EFG由圖①所示的位置繞O點逆時針旋轉一周,是否存在某位置使△BFG是等腰三角形,若存在,請直接寫出相應的旋轉角α(精確到0.1°);若不存在,說明理由.
【答案】(1) GH:GK=;(2)不變,GH:GK=GN:GM=;(3)存在,30°、90°、133.2°或346.8°.
【解析】
(1)根據(jù)30°的直角三角形的三邊關系,利用已知條件和勾股定理可以求出直角三角形的三邊長度,利用三角形的中位線可以求出GK,和GH的值,可以求出其比值.
(2)作GM⊥AC于M,GN⊥BC于N,利用三角形相似可以求出GH與GK的比值不變.
(3)三角板EFG由圖①所示的位置繞O點逆時針旋轉一周,存在某位置使△BFG是等腰三角形,相應的旋轉角α為:30°、90°、133.2°或346.8°.
(1)∵∠ACB=∠EGF=90°,∠B=∠F=30°
∴AC=AB,EG=EF
∵AB=EF=4
∴AC=EG=2,在Rt△ACB和Rt△EGF中,由勾股定理得
BC=GF=2
∵GE⊥AC,GF⊥BC
∴GE∥BC,GF∥AC
∵G是AB的中點
∴K,H分別是AC、CB的中點
∴GK,GH是△ABC的中位線
∴GK=BC=,GH=AC=1
∴GH:GK=1;;
(2)不變,
理由如下:作GM⊥AC于M,GN⊥BC于N,
∴∠GMC=∠GNH=90°由旋轉的性質可知:
∠2=∠1
∴△GMK∽△GNH
∴
∵GN:GM=1:
∴GH:GK=1:
∴旋轉角α滿足條件:0°<α<30°時,GH:GK的值比值不變;
(3)三角板EFG由圖①所示的位置繞O點逆時針旋轉一周,存在某位置使△BFG是等腰三角形,相應的旋轉角α為:30°、90°、133.2°或346.8°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是的直徑,,AC切于點A,點E為上一點,且,連CE交BD于點D.
求證:CD為的切線;
連AD,BE交于點F,的半徑為2,當點F為AD中點時,求BD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線過點,頂點為M點.
(1)求該拋物線的解析式;
(2)試判斷拋物線上是否存在一點P,使∠POM=90.若不存在,說明理由;若存在,求出P點的坐標;
(3)試判斷拋物線上是否存在一點K,使∠OMK=90,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,,,,于點H,點D在AH上,且,連接BD.
如圖1,將繞點H旋轉,得到點B、D分別與點E、F對應,連接AE,當點F落在AC上時不與C重合,求AE的長;
如圖2,是由繞點H逆時針旋轉得到的,射線CF與AE相交于點G,連接GH,試探究線段GH與EF之間滿足的等量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A、C分別在x、y軸的正半軸上,頂點B的坐標為(4,2).點M是邊BC上的一個動點(不與B、C重合),反比例函數(shù)y=(k>0,x>0)的圖象經(jīng)過點M且與邊AB交于點N,連接MN.
(1)當點M是邊BC的中點時.
①求反比例函數(shù)的表達式;
②求△OMN的面積;
(2)在點M的運動過程中,試證明:是一個定值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國家規(guī)定“中小學生每天在校體育活動時間不低于1小時”.為此,某市就“你每天在校體育活動時間是多少”的問題隨機調查了轄區(qū)內(nèi)300名初中學生.根據(jù)調查結果繪制成的統(tǒng)計圖(部分)如圖所示,其中分組情況是:
A組:;B組:
C組:D組:
請根據(jù)上述信息解答下列問題:
(1)C組的人數(shù)是;
(2)本次調查數(shù)據(jù)的中位數(shù)落在組內(nèi);
(3)若該轄區(qū)約有24 000名初中學生,請你估計其中達國家規(guī)定體育活動時間的人約有多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對非負實數(shù)x“四舍五入”到個位的值記為< x >,即已知n為正整數(shù),如果n-≤x<n+,那么< x >=n.例如:< 0 >=< 0.48 >=0,< 0.64 >=< 1.493 >=1,< 2 >=2,< 3.5 >=< 4.12 >=4,…則滿足方程< x >=的非負實數(shù)x的值為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=3x﹣3分別交x軸、y軸于A、B兩點,拋物線y=+bx+c經(jīng)過A、B兩點,點C是拋物線與x軸的另一個交點,該拋物線的對稱軸與x軸交于點E.
(1)直接寫出拋物線的解析式為 ;
(2)以點E為圓心的⊙E與直線AB相切,求⊙E的半徑;
(3)連接BC,點P是第三象限內(nèi)拋物線上的動點,連接PE交線段BC于點D,當△CED為直角三角形時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩地相距90km,甲騎摩托車由A地出發(fā),去B地辦事,甲出發(fā)的同時,乙騎自行車同時由B地出發(fā)沿著同一條道路前往A地,甲辦完事后原速返回A地,結果比乙早到0.5小時.甲、乙兩人離A地距離y(km)與時間x(h)的函數(shù)關系圖像如圖所示.下列說法:①.a=3.5,b=4;② 甲走的全路程是90km;③乙的平均速度是22.5km/h;.④甲在B地辦事停留了0.5小時.其中正確的說法有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com