【題目】如圖,ABC的面積為12,AC=3,現(xiàn)將ABC沿AB所在直線翻折,使點C落在直線AD上的C處,P為直線AD上的一點,則線段BP的長可能是(  )

A. 3 B. 5 C. 6 D. 10

【答案】D

【解析】

BBNACN,BMADM,根據(jù)折疊得出∠C′AB=CAB,根據(jù)角平分線性質(zhì)得出BN=BM,根據(jù)三角形的面積求出BN,即可得出點BAD的最短距離是8,得出選項即可.

解:如圖:
BBNACN,BMADM,
∵將ABC沿AB所在直線翻折,使點C落在直線AD上的C′處,
∴∠C′AB=CAB,
BN=BM,
∵△ABC的面積等于12,邊AC=3,
×AC×BN=12,
BN=8,
BM=8,
即點BAD的最短距離是8,
BP的長不小于8,
即只有選項D符合,
故選D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABOC的頂點O在坐標原點,BOx軸的負半軸上,∠BOC=60°,頂點C的坐標為m,),反比例函數(shù)的圖像與菱形對角線AO交于D連接BD,BDx軸時,k的值是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O(0,0),A(0,1)是正方形的兩個頂點,以對角線為邊作正方形,再以正方形的對角線作正方形,…,依此規(guī)律,則點的坐標是( )

A. (-8,0) B. (0,8)

C. (0,8 D. (0,16)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°, AD∠BAC的平分線,OAB上一點, OA為半徑的⊙O經(jīng)過點D

1)求證:BC⊙O切線;

2)若BD=5DC=3,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了調(diào)查今年有多少名學生參加中考,小明從全市所有家庭中隨機抽查了200個家庭,發(fā)現(xiàn)其中有10個家庭有子女參加中考。

(1)本次抽查的200個家庭中,有子女參加中考的家庭的頻率是多少?

(2)如果你隨機調(diào)查一個家庭,估計該家庭有子女參加中考的概率是多少?

(3)已知全市約有1.3×106個家庭,假設(shè)有子女參加中考的每個家庭中只有一名考生,請你估計今年全市有多少名考生參加中考?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:等邊三角形,軸于點,,,,且、滿足

1)如圖,求、的坐標及的長;

2)如圖,點延長線上一點,點右側(cè)一點,,且.連接

求證:直線必過點關(guān)于軸對稱的對稱點;

3)如圖,若點延長線上,點延長線上,且,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩座城市的中心火車站A,B兩站相距360 km.一列動車與一列特快列車分別從A,B兩站同時出發(fā)相向而行,動車的平均速度比特快列車快54 km/h,當動車到達B站時,特快列車恰好到達距離A135 km處的C站.求動車和特快列車的平均速度各是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商家銷售一款商品,進價每件80元,售價每件145元,每天銷售40件,每銷售一件需支付給商場管理費5元,未來一個月30天計算,這款商品將開展每天降價1的促銷活動,即從第一天開始每天的單價均比前一天降低1元,通過市場調(diào)查發(fā)現(xiàn),該商品單價每降1元,每天銷售量增加2件,設(shè)第xx為整數(shù)的銷售量為y件.

直接寫出yx的函數(shù)關(guān)系式;

設(shè)第x天的利潤為w元,試求出wx之間的函數(shù)關(guān)系式,并求出哪一天的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(發(fā)現(xiàn))

如圖∠ACB=ADB=90°,那么點D在經(jīng)過A,B,C三點的圓上(如圖①).

如圖②,如果∠ACB=ADB=a(a≠90°)(點C,DAB的同側(cè)),那么點D還在經(jīng)過A,B,C三點的圓上嗎?請證明點D也不在⊙O內(nèi).

(應用)

利用(發(fā)現(xiàn))和(思考)中的結(jié)論解決問題:

(1)如圖④,已知∠BCD=BAD,CAD=40°,求∠CBD的度數(shù).

(2)如圖⑤,若四邊形ABCD中,∠CAD=90°,作∠CDF=90°,交CA延長線于F,點EAB上,∠AED=ADF,CD=3,EC=2,求ED的長.

查看答案和解析>>

同步練習冊答案