【題目】△ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.(不寫解答過程,直接寫出結(jié)果)
(1)若△A1B1C1與△ABC關(guān)于原點(diǎn)O成中心對(duì)稱,則點(diǎn)A1的坐標(biāo)為 ;
(2)將△ABC向右平移4個(gè)單位長(zhǎng)度得到△A2B2C2,則點(diǎn)B2的坐標(biāo)為 ;
(3)將△ABC繞O點(diǎn)順時(shí)針方向旋轉(zhuǎn)90°,則點(diǎn)C走過的路徑長(zhǎng)為 ;
(4)在x軸上找一點(diǎn)P,使PA+PB的值最小,則點(diǎn)P的坐標(biāo)為 .
【答案】(1)(2,﹣3);(2)(3,1);(3)π;(4)(,0).
【解析】
試題分析:(1)利用關(guān)于原點(diǎn)中心對(duì)稱的點(diǎn)的坐標(biāo)特征求解;
(2)利用點(diǎn)的平移規(guī)律求解;
(3)點(diǎn)C走過的路徑為以點(diǎn)O為圓心,OC為半徑,圓心角為90度的弧,然后根據(jù)弧長(zhǎng)公式計(jì)算點(diǎn)C走過的路徑長(zhǎng);
(4)先確定點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)B′坐標(biāo)為(﹣1,﹣1),連結(jié)AB′交x軸于P點(diǎn),根據(jù)兩點(diǎn)之間線段最短可確定PA+PB的值最小,接著利用待定系數(shù)法求出直線AB′的解析式,然后求直線AB′與x軸的交點(diǎn)坐標(biāo)就看得到點(diǎn)P的坐標(biāo).
試題解析:(1)若△A1B1C1與△ABC關(guān)于原點(diǎn)O成中心對(duì)稱,則點(diǎn)A1的坐標(biāo)為(2,﹣3);
(2)將△ABC向右平移4個(gè)單位長(zhǎng)度得到△A2B2C2,則點(diǎn)B2的坐標(biāo)為(3,1);
(3)將△ABC繞O點(diǎn)順時(shí)針方向旋轉(zhuǎn)90°,則點(diǎn)C走過的路徑長(zhǎng)==π;
(4)B點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)B′坐標(biāo)為(﹣1,﹣1),連結(jié)AB′交x軸于P點(diǎn),則PA+PB=PA+PB′=AB′,此時(shí)PA+PB的值最小,設(shè)直線AB′的解析式為y=kx+b,把A(﹣2,3),B′(﹣1,﹣1)代入得:,得:,所以直線AB′的解析式為y=﹣4x﹣5,當(dāng)y=0時(shí),﹣4x﹣5=0,解得x=,所以此時(shí)點(diǎn)P的坐標(biāo)為(,0).
故答案為:(2,﹣3);(3,1);π;(,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知1微米=10﹣7米,則25微米用科學(xué)記數(shù)法表示為( )
A.0.25×10﹣5米
B.25×10﹣7米
C.2.5×10﹣6米
D.2.5×10﹣8米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若順次連接四邊形ABCD各邊的中點(diǎn)所得四邊形是矩形,則四邊形ABCD一定滿足( )
A.對(duì)角線相等
B.對(duì)角線互相平分
C.對(duì)角線互相垂直
D.對(duì)角線相等且相互平分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的進(jìn)價(jià)為每件200元,按標(biāo)價(jià)打八折售出后每件可獲利40元,則該商品的標(biāo)價(jià)為每件_______元。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=90°,E為BC上一點(diǎn),A點(diǎn)和E點(diǎn)關(guān)于BD對(duì)稱,B點(diǎn)、C點(diǎn)關(guān)于DE對(duì)稱,求∠ABC和∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),平行于x軸的直線與拋物線L:相交于A,B兩點(diǎn)(點(diǎn)B在第一象限),點(diǎn)D在AB的延長(zhǎng)線上.
(1)已知a=1,點(diǎn)B的縱坐標(biāo)為2.
①如圖1,向右平移拋物線L使該拋物線過點(diǎn)B,與AB的延長(zhǎng)線交于點(diǎn)C,求AC的長(zhǎng).
②如圖2,若BD=AB,過點(diǎn)B,D的拋物線L2,其頂點(diǎn)M在x軸上,求該拋物線的函數(shù)表達(dá)式.
(2)如圖3,若BD=AB,過O,B,D三點(diǎn)的拋物線L3,頂點(diǎn)為P,對(duì)應(yīng)函數(shù)的二次項(xiàng)系數(shù)為a3,過點(diǎn)P作PE∥x軸,交拋物線L于E,F(xiàn)兩點(diǎn),求的值,并直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCO的邊OA、OC在坐標(biāo)軸上,點(diǎn)B坐標(biāo)為(6,6),將正方形ABCO繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點(diǎn)G,ED的延長(zhǎng)線交線段OA于點(diǎn)H,連CH、CG.
(1)求證:△CBG≌△CDG;
(2)求∠HCG的度數(shù);并判斷線段HG、OH、BG之間的數(shù)量關(guān)系,說明理由;
(3)連結(jié)BD、DA、AE、EB得到四邊形AEBD,在旋轉(zhuǎn)過程中,當(dāng)G點(diǎn)在何位置時(shí)四邊形AEBD是矩形?請(qǐng)說明理由并求出點(diǎn)H的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com