觀察以下等式:
(x+1)(x2-x+1)=x3+1
(x+3)(x2-3x+9)=x3+27
(x+6)(x2-6x+36)=x3+216

按以上等式的規(guī)律,填空:(a+b)(
a2-ab+b2
a2-ab+b2
)=a3+b3
分析:根據(jù)已知得出運(yùn)算法則的規(guī)律,進(jìn)而得出運(yùn)算公式.
解答:解:∵(x+1)(x2-x+1)=x3+1;
(x+3)(x2-3x+9)=x3+27=x3+33;
(x+6)(x2-6x+36)=x3+216=x3+63;

∴(a+b)( a2-ab+b2)=a3+b3
故答案為:a2-ab+b2
點(diǎn)評(píng):此題主要考查了多項(xiàng)式乘以多項(xiàng)式,根據(jù)已知得出運(yùn)算規(guī)律是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察以下等式:
1×2=
1
3
×1×2×3
,
1×2+2×3=
1
3
×2×3×4
,
1×2+2×3+3×4=
1
3
×3×4×5
,
1×2+2×3+3×4+4×5=
1
3
×4×5×6

(1)比照上述規(guī)律,請(qǐng)你寫(xiě)出第⑤與第⑦個(gè)等式;
(2)1×2+2×3+3×4+…+n(n+1)=
1
3
n(n+1)(n+2)
1
3
n(n+1)(n+2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察以下等式:
(x+1)(x2-x+1)=x3+1
(x+3)(x2-3x+9)=x3+27
(x+6)(x2-6x+36)=x3+216

(1)按以上等式的規(guī)律,填空:(a+b)(
a2-ab+b2
a2-ab+b2
)=a3+b3
(2)利用多項(xiàng)式的乘法法則,證明(1)中的等式成立.
(3)利用(1)中的公式化簡(jiǎn):(x+y)(x2-xy+y2)-(x-y)(x2+xy+y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察以下等式,猜想第n個(gè)等式應(yīng)為
1×2+2×3+3×4+…+n(n+1)=
1
3
n(n+1)(n+2)
1×2+2×3+3×4+…+n(n+1)=
1
3
n(n+1)(n+2)

1×2=
1
3
×1×2×3;
1×2+2×3=
1
3
×2×3×4
1×2+2×3+3×4=
1
3
×3×4×5;
1×2+2×3+3×4+4×5=
1
3
×4×5×6,…
根據(jù)以上規(guī)律,請(qǐng)你猜測(cè):
1×2+2×3+3×4+…+n(n+1)=
1
3
n(n+1)(n+2)
1
3
n(n+1)(n+2)
(n為自然數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

觀察以下等式:
(x+1)(x2-x+1)=x3+1
(x+3)(x2-3x+9)=x3+27
(x+6)(x2-6x+36)=x3+216

(1)按以上等式的規(guī)律,填空:(a+b)(______)=a3+b3
(2)利用多項(xiàng)式的乘法法則,證明(1)中的等式成立.
(3)利用(1)中的公式化簡(jiǎn):(x+y)(x2-xy+y2)-(x-y)(x2+xy+y2

查看答案和解析>>

同步練習(xí)冊(cè)答案