如圖,△ABC中,∠BAC=90°,BC的垂直平分線和BC相交于點D,和∠BAC的平分線AE相交于點E,AE和BC相交于點F.求證:DE=
1
2
BC.
證明:連接AD.(1分)
∵∠BAC=90°,D是BC的中點,
∴DA=DC=
1
2
BC.(1分)
∴∠1=∠C.(1分)
又∵AE平分∠BAC,
∴∠CAF=45°.(1分)
∴∠2=45°-∠1.(1分)
又∵∠3=∠FAC+∠C
=45°+∠C,
∵DE⊥BC于點D,
∴∠E=90°-∠3
=90°-(45°+∠C)
=45°-∠C
∴∠2=∠E.
∴DE=AD.
∴DE=
1
2
BC.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:單選題

O是△ABC的內(nèi)心,∠BOC為130°,則∠A的度數(shù)為( 。
A.130°B.60°C.70°D.80°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC中點,兩邊PE、PF分別交AB、AC于點E、F,給出以下四個結(jié)論:
①AE=CF;②△EPF為等腰直角三角形;③S四邊形AEPF=
1
2
S△ABC
;④EF=AP;
當∠EPF在△ABC內(nèi)繞頂點P旋轉(zhuǎn)時(點E不與點A、B重合),上述結(jié)論始終正確的有______(填序號).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在Rt△ABC中,∠ACB=90°,CD、CE分別是斜邊AB上的高與中線,CF是∠ACB的平分線.則∠1與∠2的關(guān)系是( 。
A.∠1<∠2B.∠1=∠2C.∠1>∠2D.不能確定

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在Rt△ABC中,∠C=90°,如果∠A=45°,AB=12,那么BC=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,CD⊥AB于D點,BE⊥AC于E點,BE,CD交于八點,且A八平分∠BAC.
求證:八B=八C.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)計算:2×(
2
+2)-|
2
-1|

(2)小華家在裝修房子,計劃用60塊正方形的地板磚鋪滿面積是15m2的正方形客廳,試問小華家需要購買邊長是多少的地板磚?
(3)如圖是房屋設(shè)計圖的一部分,點D是斜梁AB的中點,立柱BC,DE均垂直于橫梁AC,已知DE=2m,∠A=30°,求斜梁AB與斜柱DC的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在Rt△ABC中,∠C=90°,D為斜邊AB中點,DC=5cm,則AB=______cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,Rt△ABC中,斜邊AB上的中線CD=5cm,AC=6cm,則BC=______cm.

查看答案和解析>>

同步練習冊答案