【題目】如圖,AB是⊙O的直徑,CG是⊙O上兩點,且,過點C的直線CDBG于點D,交BA的延長線于點E,連接BC,交OD于點F

1)求證:CD是⊙O的切線;

2)若,求證:AE=AO

3)連接 AD,在(2)的條件下,若CD ,求AD的長.

【答案】1)證明見解析;(2)證明見解析;(3

【解析】

1)要證明CD是⊙O的切線,連接OC,只要證明∠OCE90°即可,根據(jù)題目中的條件,可以證明OCBD,根據(jù)CDBG于點D,從而可以證明結(jié)論成立;

2)根據(jù)OCBD可得,,利用相似三角形的性質(zhì)求出,即可證明AEAO;

3)在(2)的條件下,根據(jù)含30度直角三角形的性質(zhì)求出半徑,然后作于點,分別求出DMAM,根據(jù)勾股定理可以求得AD的長.

解:(1)連接,

,,

,,

,

,

,

,

的半徑,

的切線;

2)由(1)知,

,

,

,

,

,

,

,

設(shè),則,

,

,

;

3)在(2)的條件下,,

,

,

,,

,,

,

,,

,

于點,

,

,

,

,

,

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表是二次函數(shù)的部分對應(yīng)值:

···

···

···

···

則對于該函數(shù)的性質(zhì)的判斷:

①該二次函數(shù)有最小值;

②不等式的解集是

③方程的實數(shù)根分別位于之間;

④當(dāng)時,函數(shù)值的增大而增大;

其中正確的是:

A.①②③B.②③C.①②D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司準(zhǔn)備購進(jìn)一批產(chǎn)品進(jìn)行銷售,該產(chǎn)品的進(jìn)貨單價為6/個.根據(jù)市場調(diào)查,該產(chǎn)品的日銷售量y(個)與銷售單價x(元/個)之間滿足一次函數(shù)關(guān)系.關(guān)于日銷售量y(個)與銷售單價x(元/個)的幾組數(shù)據(jù)如表:

x

10

12

14

16

y

300

240

180

m

1)求出yx之間的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍)及m的值.

2)按照(1)中的銷售規(guī)律,當(dāng)銷售單價定為17.5/個時,日銷售量為   個,此時,獲得日銷售利潤是   

3)為防范風(fēng)險,該公司將日進(jìn)貨成本控制在900(含900元)以內(nèi),按照(1)中的銷售規(guī)律,要使日銷售利潤最大,則銷售單價應(yīng)定為多少?并求出此時的最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P⊙O 外一點,PA⊙O于點AAB⊙O的直徑,連接OP,過點BBC∥OP⊙O于點C,連接ACOP于點D

1)求證:PC⊙O的切線;

2)若PD=cm,AC=8cm,求圖中陰影部分的面積;

3)在(2)的條件下,若點E的中點,連接CE,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】天府新區(qū)某校數(shù)學(xué)活動小組在一次活動中,對一個數(shù)學(xué)問題作如下探究:

1)問題發(fā)現(xiàn):如圖1,在等邊△ABC中,點P是邊BC上任意一點,連接AP,以AP為邊作等邊△APQ,連接CQ.求證:BP CQ;

2)變式探究:如圖2,在等腰△ABC中,ABBC,點P是邊BC上任意一點,以AP為腰作等腰△APQ,使AP PQAPQ ABC,連接CQ.判斷∠ABC和∠ACQ的數(shù)量關(guān)系,并說明理由;

3)解決問題:如圖3,在正方形ADBC中,點P是邊BC上一點,以AP為邊作正方形 APEF,Q是正方形APEF的中心,連接CQ.若正方形APEF的邊長為6,,求正方形ADBC的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點角平分線交點, ,,,將平移使其頂點重合,則圖中陰影部分的周長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】發(fā)現(xiàn)問題:

1)如圖1ABO的直徑,請在O上求作一點P,使∠ABP45°.(不必寫作法)

問題探究:

2)如圖2,等腰直角三角形△ABC中,∠A90°,ABAC3DAB上一點,AD2,在BC邊上是否存在點P,使∠APD45°?若存在,求出BP的長度,若不存在,請說明理由.

問題解決:

3)如圖3,為矩形足球場的示意圖,其中寬AB66米、球門EF8米,且EBFA.點P、Q分別為BC、AD上的點,BP7米,∠BPQ135,一位左前鋒球員從點P處帶球,沿PQ方向跑動,球員在PQ上的何處才能使射門角度(∠EMF)最大?求出此時PM的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=4cm,動點E從點A出發(fā),以1cm/秒的速度沿折線ABBC的路徑運動,到點C停止運動.過點E EFBD,EF與邊AD(或邊CD)交于點F,EF的長度ycm)與點E的運動時間x(秒)的函數(shù)圖象大致是

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,ADBC,ABBC,CDDE,CD=ED,AD=2,BC=3,則ADE的面積為( )

A.1 B.2 C.5 D.無法確定

查看答案和解析>>

同步練習(xí)冊答案