【題目】如圖,△ABC中,∠BAC=110°,AB的垂直平分線交BC于點(diǎn)DAC的垂直平分線交BC于點(diǎn)E,BC=10cm.求:

(1)△ADE的周長;

(2)∠DAE的度數(shù).

【答案】(1)10cm;(2)40°

【解析】(1)、根據(jù)中垂線的性質(zhì)得出AD=BD,AE=CE,從而得出△ADE的周長等于BC的長度,得出答案;(2)、根據(jù)中垂線的性質(zhì)得出∠B=∠BAD,∠C=∠EAC,然后根據(jù)三角形內(nèi)角和定理得出∠B+∠C=70°,從而得出∠ADE+∠AED=140°,最后根據(jù)三角形內(nèi)角和定理得出∠DAE的度數(shù).

(1)、∵DF垂直平分AB,EG垂直平分AC,∴AD=BD,AE=EC,

∴△ADE的周長等于10cm;

(2)、∵AD=BD,AE=EC,∴∠B=∠BAD,∠C=∠EAC,∴∠ADE=2∠B,∠AED=2∠C,

而∠B+∠C=70°,∴∠ADE+∠AED=140°,∴∠DAE=40°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一直徑是 米的圓形鐵皮,現(xiàn)從中剪出一個(gè)圓周角是90°的最大扇形ABC,則:
(1)AB的長為米;
(2)用該扇形鐵皮圍成一個(gè)圓錐,所得圓錐的底面圓的半徑為米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)根據(jù)圖中提供的信息,回答下列問題

(1)一個(gè)暖瓶與一個(gè)水杯分別是多少元?

(2)甲、乙兩家商場同時(shí)出售同樣的暖瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動(dòng),甲商場規(guī)定: 這兩種商品都打九折;乙商場規(guī)定:買一個(gè)暖瓶贈(zèng)送一個(gè)水杯。若某單位想要買4個(gè)暖瓶和15個(gè)水杯,請(qǐng)問選擇哪家商場購買更合算,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某裝修工程,甲、乙兩人可以合作完成,若甲、乙兩人合作4天后,再由乙獨(dú)作12天可以完成,已知甲獨(dú)作每天需要費(fèi)用580元.乙獨(dú)作每天需費(fèi)用280元.但乙單獨(dú)完成的天數(shù)是甲單獨(dú)完成天數(shù)的2倍.
(1)甲、乙兩人單獨(dú)作這項(xiàng)工程各需多少天?
(2)如果工期要求不超過18天完成,應(yīng)如何安排甲乙兩人的工期使這項(xiàng)工程比較省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果三角形有一邊上的中線恰好等于這邊的長,那么稱這個(gè)三角形為有趣三角形,這條中線稱為有趣中線。如圖,在三角形ABC中C=90°,較短的一條直角邊BC=1,且三角形ABC是有趣三角形,求三角形ABC的有趣中線的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(閱讀理解)

滿足,求的值

解:設(shè),則,

所以

(解決問題)

(1)滿足,求的值.

(2)滿足,求的值.

(3)如圖,正方形的邊長為,,長方形的面積是500,四邊形都是正方形,是長方形,求圖中陰影部分的面積(結(jié)果必須是一個(gè)具體的數(shù)值).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠現(xiàn)有甲種原料3600kg,乙種原料2410kg,計(jì)劃利用這兩種原料生產(chǎn)A,B兩種產(chǎn)品共500件,產(chǎn)品每月均能全部售出.已知生產(chǎn)一件A產(chǎn)品需要甲原料9kg和乙原料3kg;生產(chǎn)一件B種產(chǎn)品需甲種原料4kg和乙種原料8kg.

(1)設(shè)生產(chǎn)x件A種產(chǎn)品,寫出x應(yīng)滿足的不等式組.

(2)問一共有幾種符合要求的生產(chǎn)方案?并列舉出來.

(3)若有兩種銷售定價(jià)方案,第一種定價(jià)方案可使A產(chǎn)品每件獲得利潤1.15萬元,B產(chǎn)品每件獲得利潤1.25萬元;第二種定價(jià)方案可使A和B產(chǎn)品每件都獲得利潤1.2萬元;在上述生產(chǎn)方案中哪種定價(jià)方案盈利最多?(請(qǐng)用數(shù)據(jù)說明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8分)某園林部門決定利用現(xiàn)有的349盆甲種花卉和295盆乙種花卉搭配A、B兩種園藝造型共50個(gè),擺放在迎賓大道兩側(cè).已知搭配一個(gè)A種造型需甲種花卉8盆,乙種花卉4盆;搭配一個(gè)B種造型需甲種花卉5盆,乙種花卉9盆.

l)某校2015屆九年級(jí)某班課外活動(dòng)小組承接了這個(gè)園藝造型搭配方案的設(shè)計(jì),問符合題意的搭配方案有幾種?請(qǐng)你幫助設(shè)計(jì)出來;

2)若搭配一個(gè)A種造型的成本是200元,搭配一個(gè)B種造型的成本是360元,試說明(1)中哪種方案成本最低,最低成本是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)(﹣2)1﹣|﹣ |+(3.14﹣π)0+4cos45°
(2)已知x2﹣2x﹣7=0,求(x﹣2)2+(x+3)(x﹣3)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案