【題目】已知二次函數(shù)y=a(x﹣m)2﹣a(x﹣m)(a,m為常數(shù),且a≠0).
(1)求證:不論a與m為何值,該函數(shù)的圖象與x軸總有兩個(gè)公共點(diǎn).
(2)設(shè)該函數(shù)的圖象的頂點(diǎn)為C,與x軸交于A,B兩點(diǎn),與y軸交于D點(diǎn).
①當(dāng)△ABC的面積為1時(shí),求a的值.
②當(dāng)△ABC的面積與△ABD的面積相等時(shí),求m的值.

【答案】
(1)

證明:令y=0,a(x﹣m)2﹣a(x﹣m)=0,

△=(﹣a)2﹣4a×0=a2,

∵a≠0,

∴a2>0,

∴不論a與m為何值,該函數(shù)的圖象與x軸總有兩個(gè)公共點(diǎn)


(2)

解:①y=0,則a(x﹣m)2﹣a(x﹣m)=a(x﹣m)(x﹣m﹣1)=0,

解得x1=m,x2=m+1,

∴AB=(m+1)﹣m=1,

y=a(x﹣m)2﹣a(x﹣m)=a(x﹣m﹣ 2 ,

△ABC的面積= ×1×|﹣ |=1,

解得a=±8;

②x=0時(shí),y=a(0﹣m)2﹣a(0﹣m)=am2+am,

所以,點(diǎn)D的坐標(biāo)為(0,am2+am),

△ABD的面積= ×1×|am2+am|,

∵△ABC的面積與△ABD的面積相等,

×1×|am2+am|= ×1×|﹣ |,

整理得,m2+m﹣ =0或m2+m+ =0,

解得m= 或m=﹣


【解析】(1)把(x﹣m)看作一個(gè)整體,令y=0,利用根的判別式進(jìn)行判斷即可;(2)①令y=0,利用因式分解法解方程求出點(diǎn)A、B的坐標(biāo),然后求出AB,再把拋物線轉(zhuǎn)化為頂點(diǎn)式形式求出頂點(diǎn)坐標(biāo),再利用三角形的面積公式列式進(jìn)行計(jì)算即可得解;②令x=0求出點(diǎn)D的坐標(biāo),然后利用三角形的面積列式計(jì)算即可得解.
【考點(diǎn)精析】掌握二次函數(shù)的性質(zhì)是解答本題的根本,需要知道增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=6cm,BC=8cm.如果點(diǎn)E由點(diǎn)B出發(fā)沿BC方向向點(diǎn)C勻速運(yùn)動(dòng),同時(shí)點(diǎn)F由點(diǎn)D出發(fā)沿DA方向向點(diǎn)A勻速運(yùn)動(dòng),它們的速度分別為2cm/s和1cm/s.FQ⊥BC,分別交AC、BC于點(diǎn)P和Q,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<4).

(1)連結(jié)EF、DQ,若四邊形EQDF為平行四邊形,求t的值;
(2)連結(jié)EP,設(shè)△EPC的面積為ycm2 , 求y與t的函數(shù)關(guān)系式,并求y的最大值;
(3)若△EPQ與△ADC相似,請(qǐng)直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一筆直的海岸線l上有AB兩個(gè)觀測(cè)站,A在B的正東方向,AB=2(單位:km).有一艘小船在點(diǎn)P處,從A測(cè)得小船在北偏西60°的方向,從B測(cè)得小船在北偏東45°的方向.

(1)求點(diǎn)P到海岸線l的距離;
(2)小船從點(diǎn)P處沿射線AP的方向航行一段時(shí)間后,到點(diǎn)C處,此時(shí),從B測(cè)得小船在北偏西15°的方向.求點(diǎn)C與點(diǎn)B之間的距離.(上述兩小題的結(jié)果都保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC= ,BC=3,△DEF是邊長(zhǎng)為a(a為小于3的常數(shù))的等邊三角形,將△DEF沿AC方向平移,使點(diǎn)D在線段AC上,DE∥AB,設(shè)△DEF與△ABC重疊部分的周長(zhǎng)為T.

(1)求證:點(diǎn)E到AC的距離為一個(gè)常數(shù);
(2)若AD= ,當(dāng)a=2時(shí),求T的值;
(3)若點(diǎn)D運(yùn)動(dòng)到AC的中點(diǎn)處,請(qǐng)用含a的代數(shù)式表示T.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB=BC,對(duì)角線BD平分∠ABC,P是BD上一點(diǎn),過(guò)點(diǎn)P作PM⊥AD,PN⊥CD,垂足分別為M,N.
(1)求證:∠ADB=∠CDB;
(2)若∠ADC=90°,求證:四邊形MPND是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,將點(diǎn)A翻折到對(duì)角線BD上的點(diǎn)M處,折痕BE交AD于點(diǎn)E.將點(diǎn)C翻折到對(duì)角線BD上的點(diǎn)N處,折痕DF交BC于點(diǎn)F.
(1)求證:四邊形BFDE為平行四邊形;
(2)若四邊形BFDE為菱形,且AB=2,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】a≠0,函數(shù)y= 與y=﹣ax2+a在同一直角坐標(biāo)系中的大致圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A(0,2),B(2,2),C(-1,-2),拋物線F: 與直線x=-2交于點(diǎn)P.

(1)當(dāng)拋物線F經(jīng)過(guò)點(diǎn)C時(shí),求它的表達(dá)式;
(2)拋物線F上有兩點(diǎn)M 、N ,若-2≤ ,求m的取值范圍;
(3)設(shè)點(diǎn)P的縱坐標(biāo)為 ,求 的最小值,此時(shí)拋物線F上有兩點(diǎn)M 、N ,
≤-2,比較 的大小;
(4)當(dāng)拋物線F與線段AB有公共點(diǎn)時(shí),直接寫出m的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩家園林公司承接了哈爾濱市平房區(qū)園林綠化工程,已知乙公司單獨(dú)完成所需要的天數(shù)是甲公司單獨(dú)完成所需天數(shù)的1.5倍,如果甲公司單獨(dú)工作10天,再由乙公司單獨(dú)工作15天,這樣就可完成整個(gè)工程的三分之二.
(1)求甲、乙兩公司單獨(dú)完成這項(xiàng)工程各需多少天?
(2)上級(jí)要求該工程完成的時(shí)間不得超過(guò)30天.甲、乙兩公司合作若干天后,甲公司另有項(xiàng)目離開,剩下的工程由乙公司單獨(dú)完成,并且在規(guī)定時(shí)間內(nèi)完成,求甲、乙兩公司合作至少多少天?

查看答案和解析>>

同步練習(xí)冊(cè)答案