【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如圖所示,點A的坐標(biāo)為(1,0),點D的坐標(biāo)為(0,2).延長CB交x軸于點,作正方形;延長交x軸于點,作正方形…按這樣的規(guī)律進(jìn)行下去,第2019個正方形的面積為( )
A.B.
C.D.
【答案】B
【解析】
根據(jù)相似三角形對應(yīng)邊成比例得到正方形的邊長,然后觀察得到正方形邊長的規(guī)律,進(jìn)而表示出正方形的面積.
解:∵正方形ABCD的點A的坐標(biāo)為(1,0),點D的坐標(biāo)為(0,2)
∴OA=1,OD=2,
∴,,
∵正方形ABCD,正方形
∴∠OAD+∠A1AB=90°,∠ADO+∠OAD=90°,
∴∠A1AB=∠ADO
∵∠AOD=∠A1BA=90°,
∴△A1AB∽△ADO
∴
∵,
∴,
∴第2個正方形的邊長:,
同理可得:第3個正方形的邊長:
第4個正方形的邊長:
……
∴第2019個正方形的邊長:,
所以第2019個正方形的面積為:
故答案為:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,以AB為直徑作圓交AC、BC于點D、E兩點,AF切⊙O于點A,點D是AC中點.
(1)求證:AB=BC;
(2)若,CF=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四邊形ACDE是平行四邊形,連結(jié)CE交AD于點F,連結(jié)BD交CE于點G,連結(jié)BE. 下列結(jié)論中:① CE=BD; ②△ADC是等腰直角三角形;
③∠ADB=∠AEB; ④ CD·AE=EF·CG;
一定正確的結(jié)論有
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣x2+2x+3.
(1)求它的對稱軸和頂點坐標(biāo);
(2)求該拋物線與x軸的交點坐標(biāo);
(3)建立平面直角坐標(biāo)系,畫出這條拋物線的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】類比、轉(zhuǎn)化、從特殊到一般等思想方法,在數(shù)學(xué)學(xué)習(xí)和研究中經(jīng)常用到,如下是一個案例,請補充完整.
原題:如圖1,在平行四邊形ABCD中,點E是BC的中點,點F是線段AE上一點,BF的延長線交射線CD于點G.若,求的值.
(1)嘗試探究
在圖1中,過點E作EH∥AB交BG于點H,則AB和EH的數(shù)量關(guān)系是 ,CG和EH的數(shù)量關(guān)系是 ,的值是 .
(2)類比延伸
如圖2,在原題的條件下,若求的值(用含有m的代數(shù)式表示).
(3)拓展遷移
如圖3,梯形ABCD中,DC∥AB,點E是BC的延長線上的一點,AE和BD相交于點F. 若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C1:y1=a(x﹣h)2+2,直線1:y2=kx﹣kh+2(k≠0).
(1)求證:直線l恒過拋物線C的頂點;
(2)若a>0,h=1,當(dāng)t≤x≤t+3時,二次函數(shù)y1=a(x﹣h)2+2的最小值為2,求t的取值范圍.
(3)點P為拋物線的頂點,Q為拋物線與直線l的另一個交點,當(dāng)1≤k≤3時,若線段PQ(不含端點P,Q)上至少存在一個橫坐標(biāo)為整數(shù)的點,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,
(1)求證:無論k取什么實數(shù)值,該方程總有兩個不相等的實數(shù)根?
(2)當(dāng)Rt△ABC的斜邊a=,且兩條直角邊的長b和c恰好是這個方程的兩個根時,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為正方形網(wǎng)格,每個小正方形的邊長均為1,各個小正方形的頂點叫做格點,請在下面的網(wǎng)格中按要求分別畫圖,使得每個圖形的頂點均在格點上.
(1)在圖中畫一個以為一邊的菱形,且菱形的面積等于20.
(2)在圖中畫一個以為對角線的正方形,并直接寫出正方形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com