【題目】如圖,BD為圓O的直徑,直線ED為圓O的切線,A、C兩點(diǎn)在圓上,AC平分∠BAD且交BDF點(diǎn).若∠ADE19°,則∠AFB的度數(shù)為何?(  )

A. 97° B. 104° C. 116° D. 142°

【答案】C

【解析】

先根據(jù)直徑所對(duì)的圓周角為直角得出∠BAD的度數(shù),根據(jù)角平分線的定義得出∠BAF的度數(shù),再根據(jù)弦切角等于它所夾弧對(duì)的圓周角,得出∠ABD的度數(shù),最后利用三角形內(nèi)角和定理即可求出∠AFB的度數(shù).

∵BD是圓O的直徑,
∴∠BAD=90°,
又∵AC平分∠BAD,
∴∠BAF=∠DAF=45°,
∵直線ED為圓O的切線,
∴∠ADE=∠ABD=19°,
∴∠AFB=180°-∠BAF-∠ABD=180°-45°-19°=116°.
故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是O的直徑,點(diǎn)C為O上一點(diǎn),CN為O的切線,OMAB于點(diǎn)O,分別交AC、CN于D、M兩點(diǎn).

(1)求證:MD=MC;

(2)若O的半徑為5,AC=4,求MC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷(xiāo)售櫻桃,已知櫻桃的進(jìn)價(jià)為15元/千克,如果售價(jià)為20元/千克,那么每天可售出250千克,如果售價(jià)為25元/千克,那么每天可獲利2000元,經(jīng)調(diào)查發(fā)現(xiàn):每天的銷(xiāo)售量y(千克)與售價(jià)x(元/千克)之間存在一次函數(shù)關(guān)系.

(1)求y與x之間的函數(shù)關(guān)系式;

(2)若櫻桃的售價(jià)不得高于28元/千克,請(qǐng)問(wèn)售價(jià)定為多少時(shí),該超市每天銷(xiāo)售櫻桃所獲的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某條道路上通行車(chē)輛限速為60千米/時(shí),在離道路50米的點(diǎn)P處建一個(gè)監(jiān)測(cè)點(diǎn),道路AB段為檢測(cè)區(qū)(如圖).在△ABP中,已知∠PAB=30°,∠PBA=45°,一輛轎車(chē)通過(guò)AB段的時(shí)間8.1秒,請(qǐng)判斷該車(chē)是否超速?(參考數(shù)據(jù): ≈1.41, ≈1.73,60千米/時(shí)=米/秒)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)道路交通安全法第四十七條規(guī)定“機(jī)動(dòng)車(chē)行經(jīng)人行橫道時(shí),應(yīng)當(dāng)減速行駛;遇行人通過(guò)人行橫道,應(yīng)當(dāng)停車(chē)讓行” 如圖:一輛汽車(chē)在一個(gè)十字路口遇到行人時(shí)剎車(chē)停下,汽車(chē)?yán)锏鸟{駛員看地面的斑馬線前后兩端的視角分別是,如果斑馬線的寬度是米,駕駛員與車(chē)頭的距離是米,這時(shí)汽車(chē)車(chē)頭與斑馬線的距離x是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD為△ABC外接圓的直徑,AD⊥BC,垂足為點(diǎn)F,∠ABC的平分線交AD于點(diǎn)E,連接BD,CD.

(1)求證:BD=CD;

(2)請(qǐng)判斷B,E,C三點(diǎn)是否在以D為圓心,以DB為半徑的圓上?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖△ABC中,∠ACB90°,以AC為直徑的OABD,過(guò)DO的切線交BC于點(diǎn)E,EFAB,垂足為F

(1)求證:DEBC;

(2)AC6,BC8,求SACDSEDF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=x22x8

1)用配方法把y=x22x8化為y=xh2+k形式;

2)并指出:拋物線的頂點(diǎn)坐標(biāo)是 ,拋物線的對(duì)稱(chēng)軸方程是 ,拋物線與x軸交點(diǎn)坐標(biāo)是 ,當(dāng)x 時(shí),yx的增大而增大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖2,是兩個(gè)全等的等腰三角形,,分別與相交于點(diǎn),.

1)圖中有哪幾對(duì)不全等的相似三角形,請(qǐng)把他們表示出來(lái);

2)根據(jù)圖1兩位同學(xué)對(duì)圖形的探索,試探索之間的關(guān)系,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案