【題目】如圖,EF是一面長18米的墻,用總長為32米的木柵欄(圖中的虛線)圍一個矩形場地ABCD,中間用柵欄隔成同樣三塊.若要圍成的矩形面積為60平方米,求AD的長.

【答案】5米.

【解析】

AD長為x米,四邊形ABCD是矩形,根據(jù)矩形的性質,即可求得AB的長;根據(jù)題意可得方程x324x)=60,解此方程即可求得x的值.

解:設與墻頭垂直的邊AD長為x米,四邊形ABCD是矩形,

BCMNPQx米,

AB32ADMNPQBC324x(米),

根據(jù)題意得:x324x)=60,

解得:x3x5

x3時,AB324x2018(舍去);

x5時,AB324x12(米),

AD的長為5米.

答:AD的長為5.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AB為直徑的OBC相交于點D,過點DDEAC于點E

1)求證:DEO切線;

2)若tanB=,BC16,求O直徑AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直覺的誤差:有一張8cm×8cm的正方形紙片,面積是64cm2.把這些紙片按圖1所示剪開成四小塊,其中兩塊是三角形,另外兩塊是梯形.把剪出的4個小塊按圖2所示重新拼合,這樣就得到了一個13cm×5cm的長方形,面積是65cm2,面積多了1cm2,這是為什么?

小明給出如下證明:如圖2,可知,tanCEF,tanEAB,∵tanCEFtanEAB,∴∠CEF>∠EAB,∵EFAB,∴∠EAB+AEF180°,∴CEF+AEF180°,因此A、EC三點不共線.同理A、GC三點不共線,所以拼合的長方形內部有空隙,故面積多了1cm2

1)小紅給出的證明思路為:以B為原點,BC所在的直線為x軸,建立平面直角坐標系,證明三點不共線.請你幫小紅完成她的證明;

2)將13cmx13cm的正方形按上述方法剪開拼合,是否可以拼合成一個長方形,但面積少了1cm2?如果能,求出剪開的三角形的短邊長;如果不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為2的菱形ABCD中,∠A=60°,MAD邊的中點,NAB邊上的一動點,將△AMN沿MN所在直線翻折得到△AMN,連接AC,則AC長度的最小值是( )

A. B. -1C. -1D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等腰直角三角板的一個銳角頂點與正方形ABCD的頂點A重合,兩邊分別交BCCDM、N

1)如圖①,作AEANCB的延長線于E,求證:△ABE≌△AND;

2)如圖②,若M、N分別在邊CB、DC所在的直線上時.

①求證:BM+MN=DN;②如圖③,作直線BD交直線AMANP、Q兩點,若MN=10CM=8,求AP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形紙片ABCD,AD=4AB=3,如果點E在邊BC上,將紙片沿AE折疊,使點B落在點F處,聯(lián)結FC,當EFC是直角三角形時,那么BE的長為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,已知拋物線y=ax2+bx+c的圖像經過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點AACx軸交拋物線于點C,AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設其橫坐標為m.

(1)求拋物線的解析式;

(2)若動點P在直線OE下方的拋物線上,連結PE、PO,當m為何值時,四邊形AOPE面積最大,并求出其最大值;

(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠A60°,AC2,DAB邊上一個動點(不與點AB重合),EBC邊上一點,且∠CDE30°.設ADxBEy,則下列圖象中,能表示yx的函數(shù)關系的圖象大致是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A的坐標是(1,3),將點A繞原點O順時針旋轉90°得到點A,則點A的坐標是( )

A. 3,1 B. (3,-1 C. 1,3 D. (1,-3

查看答案和解析>>

同步練習冊答案