(2013•門頭溝區(qū)一模)如圖,OA是⊙O的半徑,弦BC⊥OA,D是⊙O上一點(diǎn),若∠ADC=26°,則∠AOB的度數(shù)為(  )
分析:由OA是⊙O的半徑,弦BC⊥OA,根據(jù)垂徑定理的即可求得
AB
=
AC
,然后由圓周角定理,求得∠AOB的度數(shù).
解答:解:∵OA是⊙O的半徑,弦BC⊥OA,
AB
=
AC
,
∵∠ADC=26°,
∴∠AOB=2∠ADC=52°.
故選C.
點(diǎn)評(píng):此題考查了圓周角定理以及垂徑定理.此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)二模)PM2.5是大氣中粒徑小于等于2.5微米的顆粒物,稱為細(xì)顆粒物,是表征環(huán)境空氣質(zhì)量的主要污染物指標(biāo).2.5微米等于0.0000025米,把0.0000025用科學(xué)記數(shù)法表示為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)二模)已知圓錐側(cè)面展開圖的扇形半徑為2cm,面積是
4
3
πcm2
,則扇形的弧長(zhǎng)和圓心角的度數(shù)分別為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)二模)如圖,在平行四邊形ABCD中,AC=12,BD=8,P是AC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作EF∥BD,與平行四邊形的兩條邊分別交于點(diǎn)E、F.設(shè)CP=x,EF=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)二模)某中學(xué)初三年級(jí)的學(xué)生開展測(cè)量物體高度的實(shí)踐活動(dòng),他們要測(cè)量一幢建筑物AB的高度.如圖,他們先在點(diǎn)C處測(cè)得建筑物AB的頂點(diǎn)A的仰角為30°,然后向建筑物AB前進(jìn)20m到達(dá)點(diǎn)D處,又測(cè)得點(diǎn) A的仰角為60°,則建筑物AB的高度是
10
3
10
3
m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)二模)如圖,在平面直角坐標(biāo)系xOy中,已知矩形ABCD的兩個(gè)頂點(diǎn)B、C的坐標(biāo)分別是B(1,0)、C(3,0).直線AC與y軸交于點(diǎn)G(0,6).動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線段AB向點(diǎn)B運(yùn)動(dòng).同時(shí)動(dòng)點(diǎn) Q從點(diǎn)C出發(fā),沿線段CD向點(diǎn)D運(yùn)動(dòng).點(diǎn)P、Q的運(yùn)動(dòng)速度均為每秒1個(gè)單位,運(yùn)動(dòng)時(shí)間為t秒.過點(diǎn)P作PE⊥AB交AC于點(diǎn)E.
(1)求直線AC的解析式;
(2)當(dāng)t為何值時(shí),△CQE的面積最大?最大值為多少?
(3)在動(dòng)點(diǎn)P、Q運(yùn)動(dòng)的過程中,當(dāng)t為何值時(shí),在矩形ABCD內(nèi)(包括邊界)存在點(diǎn)H,使得以C、Q、E、H為頂點(diǎn)的四邊形是菱形?

查看答案和解析>>

同步練習(xí)冊(cè)答案