(本小題滿分12分)某班同學(xué)到野外活動,為測量一池塘兩端A、B的距離,設(shè)計了幾種方案,下面介紹兩種:(I)如圖(1),先在平地取一個可以直接到達(dá)A、B的點C,并分別延長AC到D,BC到E,使DC=AC,BC=EC,最后測出DE的距離即為AB的長。(II)如圖(2),先過B點作AB的垂線BF,再在BF上取C、D兩點,使BC=CD,接著過點D作BD的垂線DE,交AC的延長線于E,則測出DE的長即為AB的距離。閱讀后回答下列問題:

小題1:(1)方案(I)是否可行?為什么?
小題2:(2)方案(II)是否切實可行?為什么?
小題3:(3)方案(II)中作BF⊥AB,ED⊥BF的目的是           ;若僅滿足∠ABD=∠BDE≠90°,方案(II)是否成立?
小題4:(4)方案(II)中,若使BC=n·CD,能否測得(或求出)AB的長?理由是        ,若ED=m,則AB=     。

小題1:(1)方案(I)可行;
∵DC=AC,EC=BC且有對頂角∠ACB=∠DCE,
∴△ACB≌△DCE(SAS),∴AB=DE,
∴測出DE的距離即為AB的長。故方案(I)可行。(3分)
小題2:(2)方案(II)可行;
∵AB⊥BC,DE⊥CD,∴∠ABC=∠EDC=90°,
又∵BC=CD,∠ACB=∠ECD ,∴△ABC≌△EDC,∴AB=ED,
∴測出DE的長即為AB的距離。故方案(II)可行。(6分)
小題3:(3)方案(II)中作BF⊥AB,ED⊥BF的目的是作直角三角形;
若∠ABD=∠BDE≠90°,∠ACB=∠ECD,∴△ABC∽△EDC,
,∴只要測出ED、BC、CD的長,即可求得AB的長。
∴ED的長不等于AB的長,∴方案(II)不成立。(9分)
小題4:(4)根據(jù)(3)中所求可以得出,∴,∵BC=n•CD,
∴ ABED=n,求出DE即可得出答案,
當(dāng)ED=m,則AB=mn。(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)如圖,拋物線的頂點為A(2,1),且經(jīng)過原點O,與x軸的另一個交點為B

小題1:(1)求拋物線的解析式;
小題2:(2)在拋物線上求點M,使△MOB的面積是△AOB面積的3倍;
小題3:(3)連結(jié)OA,AB,在x軸下方的拋物線上是否存在點N,使△OBN與△OAB相似?若存在,求出N點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:把Rt△ABC和Rt△DEF按如圖甲擺放(點C與點E重合),點B、C(E)、F在同一條直線上.∠BAC = ∠DEF = 90°,∠ABC = 45°,BC =" 9" cm,DE =" 6" cm,EF =" 8" cm.
如圖乙,△DEF從圖甲的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△DEF的頂點F出發(fā),以3 cm/s的速度沿FD向點D勻速移動.當(dāng)點P移動到點D時,P點停止移動,△DEF也隨之停止移動.DE與AC相交于點Q,連接BQ、PQ,設(shè)移動時間為t(s).解答下列問題:
小題1:設(shè)三角形BQE的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
小題2:當(dāng)t為何值時,三角形DPQ為等腰三角形?
小題3:是否存在某一時刻t,使P、Q、B三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在RtABC中,∠C=90°,CDEF為內(nèi)接正方形,若AE=2cm,BE=1cm,則圖中陰影部分的面積為

A、1cm2;     B、cm2;     C、cm2;    D、2cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如果一個矩形對折后和原矩形相似,則對折后矩形長邊與短邊的比為  (   )
A.4:1B.2:1C.1.5:1D.:1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若△ABC~△DEF,它們的面積比為4︰1,則△ABC與△DEF的相似比為(  )
A.2︰1B.1︰2 C.4︰1 D.1︰4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知D、E分別是△ABC的邊AB、AC上的點,若要使△ABC與△ADE相似,則只需添加一個條件:_______________即可(只需填寫一個).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

兩個相似五邊形,一組對應(yīng)邊的長分別為3cm和4.5cm,如果它們的面積之和是78cm2,則較大的五邊形面積是(   )cm2。
A.44.8B.52C.54D.42

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在4×4的方格紙中,的頂點都在格點上。
(1)填空:            度;            

(2)判斷是否相似,請證明你的結(jié)論。

查看答案和解析>>

同步練習(xí)冊答案