【題目】中,,過(guò)點(diǎn)交射線于點(diǎn),若是等腰三角形,則的大小為_________度.

【答案】

【解析】

分兩種情況考慮,∠BAC為銳角時(shí),由AB=BD得∠D=DAB,由AB=AC得∠ABC=C,根據(jù)三角形外角性質(zhì)可推出∠C=2D,根據(jù)直角三角形的兩銳角互余可得∠C=60;同理,∠BAC為鈍角時(shí),可推出∠ADC=2C,根據(jù)直角三角形的兩銳角互余可得∠C=30.

如圖所示,若頂角∠BAC為銳角,則:

AB=BD,∠D=DAB

AB=AC∴∠ABC=C,

∴∠C=ABC=D+DAB=2D,

∴∠DAC=90,

∴∠C+D=3D=90,

∴∠D=30,

∴∠C=2D =60;

如圖所示,若頂角∠BAC 為鈍角,則:

AD=BD,∠B=DAB ,

∴∠ADC=B+DAB=2B

AB=AC∴∠B=C,

∴∠DAC=90,

∴∠ADC+C=3C =90

∴∠C =30.

故答案為:3060.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖棱長(zhǎng)為a的小正方體,按照下圖的方法繼續(xù)擺放,自上而下分別叫第一層、第二層…第n層,第n層的小正方體的個(gè)數(shù)記為S.解答下列問(wèn)題:

n

1

2

3

4

S

1

3

(1)按要求填寫(xiě)上表:

(2)研究上表可以發(fā)現(xiàn)S隨n的變化而變化,且S隨n的增大而增大有一定的規(guī)律,請(qǐng)你用式子來(lái)表示S與n的關(guān)系,并計(jì)算當(dāng)n=10時(shí),S的值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中,AB=AC,A=100°,BD平分ABC,求證:BC=BD+AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC為等腰直角三角形,∠CAB90°,點(diǎn)A,點(diǎn)B的坐標(biāo)分別為A0a),Bb,0),且a,b滿足a2+b24a8b+200,ACx軸交于點(diǎn)D

1)求AOB的面積;

2)求證:點(diǎn)DAC的中點(diǎn);

3)點(diǎn)Ex軸的負(fù)半軸上的動(dòng)點(diǎn),分別以OA,AE為直角邊在第一、二象限作等腰直角三角形OAN和等腰直角三角形EAM,連接MNy軸于點(diǎn)P,試探究線段OEAP的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對(duì)角線BD上的點(diǎn),∠1=∠2.

求證:(1)BE=DF;(2)AF∥CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】人民商場(chǎng)銷(xiāo)售某種冰箱,每臺(tái)進(jìn)價(jià)為2500元,市場(chǎng)調(diào)研表明:當(dāng)每臺(tái)銷(xiāo)售價(jià)定為2900元時(shí),平均每天能售出8臺(tái);每臺(tái)售價(jià)每降低50元,平均每天能多售出4臺(tái).
設(shè)該種冰箱每臺(tái)的銷(xiāo)售價(jià)降低了x元.
(1)填表:

每天售出的冰箱臺(tái)數(shù)(臺(tái))

每臺(tái)冰箱的利潤(rùn)(元)

降價(jià)前

8

降價(jià)后


(2)若商場(chǎng)要想使這種冰箱的銷(xiāo)售利潤(rùn)平均每天達(dá)到5000元,則每臺(tái)冰箱的售價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀以下材料:對(duì)數(shù)的創(chuàng)始人是蘇格蘭數(shù)學(xué)家納皮爾(J.Napier,1550-1617年),納皮爾發(fā)明對(duì)數(shù)是在指數(shù)書(shū)寫(xiě)方式之前,直到世紀(jì)瑞士數(shù)學(xué)家歐拉(L.Euler,1707-1783年)才發(fā)現(xiàn)指數(shù)與對(duì)數(shù)之間的聯(lián)系.對(duì)數(shù)的定義:一般地,若,那么叫做以為底的對(duì)數(shù),記作:.比如指數(shù)式可以轉(zhuǎn)化為,對(duì)數(shù)式可以轉(zhuǎn)化為.我們根據(jù)對(duì)數(shù)的定義可得到對(duì)數(shù)的一個(gè)性質(zhì):,,,);理由如下:設(shè)M=m,則, ,由對(duì)數(shù)的定義得+ .解決一下問(wèn)題:

1)將指數(shù)式轉(zhuǎn)化為對(duì)數(shù)式___________;

2)證明,,,);

3)拓展運(yùn)用:計(jì)算=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A(﹣4,n),B4n,﹣4)是直線ykx+b和雙曲線y的兩個(gè)交點(diǎn).

1)求兩個(gè)函數(shù)的表達(dá)式;

2)觀察圖象,直接寫(xiě)出不等式kx+b0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,過(guò)點(diǎn)A作AE⊥CD,交CD的延長(zhǎng)線于點(diǎn)E,DA平分∠BDE.

(1)求證:AE是⊙O的切線;
(2)已知AE=8cm,CD=12cm,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案