【題目】如圖所示,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣1,3)、B(﹣2,﹣2)、C(4,﹣2),則△ABC外接圓半徑的長(zhǎng)度為_____.
【答案】
【解析】
根據(jù)三角形的外心是三邊中垂線的交點(diǎn),由B、C的坐標(biāo)可知,圓心M必在直線x=1上;由圖知:AC的垂直平分線正好經(jīng)過(guò)(1,0),由此可得到M(1,0);連接MB,過(guò)M作MD⊥BC于D,由勾股定理即可求得 M的半徑長(zhǎng).
設(shè)△ABC的外心為M;
∵B(2,2),C(4,2),
∴M必在直線x=1上,
由圖知:AC的垂直平分線過(guò)(1,0),
故M(1,0);
過(guò)M作MD⊥BC于D,連接MB,
Rt△MBD中,MD=2,BD=3,
由勾股定理得:MB==,
即△ABC的外接圓半徑為.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,P是BC的中點(diǎn),把△PAB沿著PA翻折得到△PAE,過(guò)C作CF⊥DE于F,若CF=2,則DF=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知A(,y1),B(2,y2)為反比例函數(shù)圖像上的兩點(diǎn),動(dòng)點(diǎn)P(x,0)在x正半軸上運(yùn)動(dòng),當(dāng)線段AP與線段BP之差達(dá)到最大時(shí),點(diǎn)P的坐標(biāo)是( )
A. (,0) B. (1,0) C. (,0) D. (,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】施工隊(duì)要修建一個(gè)橫斷面為拋物線的公路隧道,其高度為6米,寬度OM為12米,現(xiàn)在O點(diǎn)為原點(diǎn),OM所在直線為x軸建立直角坐標(biāo)系(如圖所示).
(1)直接寫(xiě)出點(diǎn)M及拋物線頂點(diǎn)P的坐標(biāo);
(2)求出這條拋物線的函數(shù)解析式;
(3)施工隊(duì)計(jì)劃在隧道門(mén)口搭建一個(gè)矩形“腳手架”ABCD,使A、D點(diǎn)在拋物線上,B、C點(diǎn)在地面OM上.為了籌備材料,需求出“腳手架”三根木桿AB、AD、DC的長(zhǎng)度之和的最大值是多少?請(qǐng)你幫施工隊(duì)計(jì)算一下.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】利用“同角的余角相等”可以幫助我們得到相等的角,這個(gè)規(guī)律在全等三角形的判定中有著廣泛的運(yùn)用.
(1)如圖①,,,三點(diǎn)共線,于點(diǎn),于點(diǎn),,且.若,求的長(zhǎng).
(2)如圖②,在平面直角坐標(biāo)系中,為等腰直角三角形,直角頂點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為.求直線與軸的交點(diǎn)坐標(biāo).
(3)如圖③,,平分,若點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為.則 .(只需寫(xiě)出結(jié)果,用含,的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)平行四邊形ABCD對(duì)角線交點(diǎn)O的直線交AD于E,交BC于F,若AB=5,BC=6,OE=2,那么四邊形EFCD周長(zhǎng)是( )
A. 16B. 15C. 14D. 13
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E、F、 G、H分別為四邊形ABCD四邊之中點(diǎn).
(1)求證:四邊形EFGH為平行四邊形;
(2)當(dāng)AC、BD滿足______時(shí),四邊形EFGH為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,將Rt△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得到Rt△FOE,將線段EF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°后得到線段ED,分別以O、E為圓心,OA、ED長(zhǎng)為半徑畫(huà)弧AF和弧DF,連接AD,則圖中陰影部分的面積是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn)
如圖1,在Rt△ABC中,∠A=90°,=1,點(diǎn)P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=90°,∠APD=∠B,連接 CD.
(1)①求的值;②求∠ACD的度數(shù).
(2)拓展探究
如圖 2,在Rt△ABC中,∠A=90°,=k.點(diǎn)P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=90°,∠APD=∠B,連接CD,請(qǐng)判斷∠ACD與∠B 的數(shù)量關(guān)系以及PB與CD之間的數(shù)量關(guān)系,并說(shuō)明理由.
(3)解決問(wèn)題
如圖 3,在△ABC中,∠B=45°,AB=4,BC=12,P 是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=∠BAC,∠APD=∠B,連接CD.若 PA=5,請(qǐng)直接寫(xiě)出CD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com