【題目】如圖,在以為直徑的半上有C,點(diǎn)在上,過圓心作的于點(diǎn)的延長線交于點(diǎn),連結(jié),若.
試說明;
若的面積為面積的倍,連接交于點(diǎn),求的值和的長:
在的條件下,延長與的延長線相交于點(diǎn),直接寫的長
【答案】(1)詳見解析;(2);(3)
【解析】
(1)連接BC由垂徑定理可得OF垂直平分CD,得出△CDE是等腰直角三角形,∠DCE=∠CDE=45°,再根據(jù)圓的內(nèi)接四邊形的性質(zhì)即可得出答案;
(2)連接OC、BD,得出 AE=3DE=,AD=,由勾股定理計(jì)算出AC的長度,再由圓周角定理證出△ABC是等腰直角三角形,得出BC、AC和AB的長度,進(jìn)而由勾股定理得出BD的長度,再利用圓周角定理即可得出tan∠ACD的值;證明△PCF∽△ABD,利用相似比即可得出OP的長度;
(3)由等腰直角三角形的性質(zhì)得出OC⊥AB,證明△OCG∽△EAG,利用相似比即可得出答案.
解:(1)證明:連接BC,如圖1所示:
∵OF⊥CD
∴DF=CF
∴DE=EC
∵∠DEC=90°
∴△CDE是等腰直角三角形
∴∠DCE=∠CDE=45°
∴∠ABC=∠CDE=45°
∵AB是直徑
∴∠ACB=90°
∴∠BAC=45°
(2)連接OC、BD,如圖2所示:
∵DF=CF=1
∴CD=2,△CDE是等腰直角三角形
∴ED=EC=
∵△ACE的面積為△DCE面積的3倍
∴AE=3DE=,AD=
∴AC=
∵AB是半圓的直徑
∴∠ACB=∠ADB=90°
∵∠BAC=45°
∴△ABC是等腰直角三角形
∴BC=AC=,AB=AC=2
∴OC=OA=OB=,BD=
∵∠ACD=∠ABD
∴tan∠ACD= tan∠ABD=
∵∠PFC=∠ADB=90°
∴△PCF∽△ABD
∴
解得:PF=
∵OF=
∴OP=OF-PF=
(3)如圖3所示:
∵△ABC是等腰直角三角形,OA=OB
∴OC⊥AB
∴∠COG=∠DEC=90°
∵∠G=∠G
∴△OCG∽△EAG
∴
即
∴BG=,CG=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號的設(shè)備可供選購,經(jīng)調(diào)查:購買3臺甲型設(shè)備比購買2臺乙型設(shè)備多花16萬元,購買2臺甲型設(shè)備比購買3臺乙型設(shè)備少花6萬元.
(1)求甲、乙兩種型號設(shè)備的價(jià)格;
(2)該公司經(jīng)預(yù)算決定購買節(jié)省能源的新設(shè)備的資金不超過110萬元,你認(rèn)為該公司有哪幾種購買方案;
(3)在(2)的條件下,已知甲型設(shè)備的產(chǎn)量為240噸/月,乙型設(shè)備的產(chǎn)量為180噸/月,若每月要求總產(chǎn)量不低于2040噸,為了節(jié)約資金,請你為該公司設(shè)計(jì)一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=x-2與反比例函數(shù)y=的圖象相交于點(diǎn)A(2, n) ,與x軸相交于點(diǎn)B.
(1)求k 的值以及點(diǎn) B 的坐標(biāo);
(2)以AB為邊作菱形ABCD,使點(diǎn)C在x軸正半軸上,點(diǎn)D在第一象限,求點(diǎn)D的坐標(biāo);
(3)在y軸上是否存在點(diǎn)P,使PA+PB的值最。咳舸嬖,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)與一次函數(shù)的圖象相交于點(diǎn)A、點(diǎn)D,且點(diǎn)A的橫坐標(biāo)為1,點(diǎn)D的縱坐標(biāo)為-1,過點(diǎn)A作AB⊥x軸于點(diǎn)B,△AOB的面積為1.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)若一次函數(shù)y=ax+b的圖像與x軸交于點(diǎn)C,求∠ACO的度數(shù).
(3)結(jié)合圖像直接寫出,當(dāng)時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有四張不透明的卡片,除正面上的圖案不同外,其他均相同,將這四張卡片背 面向上洗勻后放在桌面上.
(1)從中隨機(jī)取出一張卡片,卡片上的圖案是中心對稱圖形的概率是_____;
(2)若從四張卡片中隨機(jī)拿出兩張卡片,請用畫樹狀圖或列表的方法,求抽取的兩張卡片都是軸對稱圖形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某初級中學(xué)數(shù)學(xué)興趣小組為了了解本校學(xué)生的年齡情況,隨機(jī)抽取了該校部分學(xué)生的年齡作為樣本,經(jīng)過數(shù)據(jù)整理,繪制出如下不完整的統(tǒng)計(jì)圖.依據(jù)相關(guān)信息解答以下問題:
(1)寫出樣本容量 ,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)寫出樣本的眾數(shù) 歲,中位數(shù) 歲;
(3)若該校一共有600名學(xué)生.估計(jì)該校學(xué)生年齡在15歲及以上的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了創(chuàng)建書香校園,去年購買了一批圖書.其中科普書的單價(jià)比文學(xué)書的單價(jià)多8元,用1800元購買的科普書的數(shù)量與用l000元購買的文學(xué)書的數(shù)量相同.
(1)求去年購買的文學(xué)書和科普書的單價(jià)各是多少元;
(2)這所學(xué)校今年計(jì)劃再購買這兩種文學(xué)書和科普書共200本,且購買文學(xué)書和科普書的總費(fèi)用不超過2088元.今年文學(xué)書的單價(jià)比去年提高了20%,科普書的單價(jià)與去年相同,且每購買1本科普書就免費(fèi)贈送1本文學(xué)書,求這所學(xué)校今年至少要購買多少本科普書?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,的半徑為5,點(diǎn)A的坐標(biāo)為(3,0),與x軸相交于點(diǎn)B,C,交y軸正半軸于點(diǎn)D.
(1)求點(diǎn)B,D的坐標(biāo);
(2)過點(diǎn)B作的切線,與過點(diǎn)A,C的拋物線交于點(diǎn)P.拋物線交y軸正半軸于點(diǎn)Q.若P的縱坐標(biāo)為t,四邊形PQAC的面積為y.
①求y與t的函數(shù)關(guān)系式;
②若△PBO與△DOA相似,求取最小值時(shí)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年10月10日傍晚18:10左右,江蘇省無錫市山區(qū)312國道上海方向K135處,錫港路上跨橋出現(xiàn)橋面?zhèn)确斐?/span>3人死亡,2人受傷,盡管該事故原因初步分析為半掛牽引車嚴(yán)重超載導(dǎo)致橋梁發(fā)生側(cè)翻,但是也引起了社會各界對橋梁設(shè)計(jì)安全性的擔(dān)憂,我市積極開展對橋梁結(jié)構(gòu)設(shè)計(jì)的安全性進(jìn)行評估(已知:抗傾覆系數(shù)越高,安全性越強(qiáng);當(dāng)抗傾覆系數(shù)≥2.5時(shí),認(rèn)為該結(jié)構(gòu)安全),現(xiàn)在重慶市隨機(jī)抽取了甲、乙兩個(gè)設(shè)計(jì)院,對其各自在建的或已建的20座橋梁項(xiàng)目進(jìn)行排查,將得到的抗傾覆數(shù)據(jù)進(jìn)行整理、描述和分析(抗傾覆數(shù)據(jù)用x表示,共分成6組:A.0≤x<2.5,B.2.5≤x<5.0,C.5.0≤x<7.5,D.7.5≤x<10.0,E.10.0≤x<12.5,F.12.5≤x<15),下面給出了部分信息;
其中,甲設(shè)計(jì)院C組的抗傾覆系數(shù)是:7,7,7,6,7,7;
乙設(shè)計(jì)院D組的抗傾覆系數(shù)是:8,8,9,8,8,8;
甲、乙設(shè)計(jì)院分別被抽取的20座橋梁的抗傾覆系數(shù)統(tǒng)計(jì)表
設(shè)計(jì)院 | 甲 | 乙 |
平均數(shù) | 7.7 | 8.9 |
眾數(shù) | a | 8 |
中位數(shù) | 7 | b |
方差 | 19.7 | 18.3 |
根據(jù)以上信息解答下列問題:
(1)扇形統(tǒng)計(jì)圖中D組數(shù)據(jù)所對應(yīng)的圓心角是 度,a= ,b= ;
(2)根據(jù)以上數(shù)據(jù),甲、乙兩個(gè)設(shè)計(jì)院中哪個(gè)設(shè)計(jì)院的橋梁安全性更高,說明理由(一條即可): ;
(3)據(jù)統(tǒng)計(jì),2018年至2019年,甲設(shè)計(jì)院完成設(shè)計(jì)80座橋梁,乙設(shè)計(jì)院完成設(shè)計(jì)120座橋梁,請估算2018年至2019年兩設(shè)計(jì)院的不安全橋梁的總數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com