【題目】如圖,拋物線y=x2+bx+c與x軸交于A,C兩點,與y軸交于B點,拋物線的頂點為點D,已知點A的坐標為(﹣1,0),點B的坐標為(0,﹣3).
(1)求拋物線的解析式及頂點D的坐標.
(2)求△ACD的面積.
科目:初中數(shù)學 來源: 題型:
【題目】與都是等腰直角三角形,且,,連接DC,點M、P、N分別為DE、DC、BC的中點
(1)如圖1,當點D、E分別在邊AB、AC上,線段PM與PN的數(shù)量關(guān)系是______,位置關(guān)系是______;
(2)把等腰繞點A旋轉(zhuǎn)到如圖2的位置,連接MN,判斷的形狀,并說明理由;
(3)把等腰繞點A在平面內(nèi)任意旋轉(zhuǎn),,,請直接寫出的面積S的變化范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解并解決問題:一般地,如果把一個圖形繞著一個定點旋轉(zhuǎn)一定角度(小于)后,能夠與原來的圖形重合,那么這個圖形叫做旋轉(zhuǎn)對稱圖形,這個定點叫做旋轉(zhuǎn)對稱中心.叫做這個旋轉(zhuǎn)對稱圖形的一個旋轉(zhuǎn)角.請依據(jù)上述定義解答下列問題:
(1)請寫出一個旋轉(zhuǎn)對稱圖形,這個圖形有一個旋轉(zhuǎn)角是.這個圖形可以是______;
(2)為了美化環(huán)境,某中學需要在一塊正六邊形空地上分別種植六種不同的花草,現(xiàn)將這塊空地按下列要求分成六塊:①分割后的整個圖形必須既是軸對稱圖形又是旋轉(zhuǎn)對稱圖形;②六塊圖形的面積相同.請你按上述兩個要求,分別在圖中的三個正六邊形中畫出三種不同的分割方法(只要求畫圖正確,不寫作法).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線與拋物線交于兩點,其中,.該拋物線與軸交于點,與軸交于另一點.
(1)求的值及該拋物線的解析式;
(2)如圖2.若點為線段上的一動點(不與重合).分別以、為斜邊,在直線的同側(cè)作等腰直角△和等腰直角△,連接,試確定△面積最大時點的坐標.
(3)如圖3.連接、,在線段上是否存在點,使得以為頂點的三角形與△相似,若存在,請直接寫出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個二次函數(shù)的圖像經(jīng)過、、三點,點的坐標為,點的坐標為,點在軸的正半軸上,且.
(1)求點的坐標;
(2)求這個二次函數(shù)的解析式;
(3)自變量在什么范圍內(nèi)時,隨的增大而增大?何時,隨的增大而減小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】罰球是籃球比賽中得分的一個組成部分,罰球命中率的高低對籃球比賽的結(jié)果影響很大.如圖是對某球員罰球訓(xùn)練時命中情況的統(tǒng)計:
下面三個推斷:①當罰球次數(shù)是500時,該球員命中次數(shù)是411,所以“罰球命中”的概率是0.822;②隨著罰球次數(shù)的增加,“罰球命中”的頻率總在0.812附近擺動,顯示出一定的穩(wěn)定性,可以估計該球員“罰球命中”的概率是0.812;③由于該球員“罰球命中”的頻率的平均值是0.809,所以“罰球命中”的概率是0.809.其中合理的是( )
A.①B.②C.①③D.②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD交CD的延長線于點E,DA平分∠BDE.
⑴求證:AE是⊙O的切線;
⑵若AE=4cm,CD=6cm,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測得A,C之間的距離為6cm,點B,D之間的距離為8cm,則線段AB的長為( 。
A.5 cmB.4.8 cmC.4.6 cmD.4 cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com