【題目】如圖,函數(shù)y= 的圖象過點A(1,2).
(1)求該函數(shù)的解析式;
(2)過點A分別向x軸和y軸作垂線,垂足為B和C,求四邊形ABOC的面積;
(3)求證:過此函數(shù)圖象上任意一點分別向x軸和y軸作垂線,這兩條垂線與兩坐標(biāo)軸所圍成矩形的面積為定值.
【答案】
(1)解:∵函數(shù)y= 的圖象過點A(1,2),
∴將點A的坐標(biāo)代入反比例函數(shù)解析式,
得2= ,解得:k=2,
∴反比例函數(shù)的解析式為y=
(2)解:∵點A是反比例函數(shù)上一點,
∴矩形ABOC的面積S=ACAB=|xy|=|k|=2
(3)解:設(shè)圖象上任一點的坐標(biāo)(x,y),
∴過這點分別向x軸和y軸作垂線,矩形面積為|xy|=|k|=2,
∴矩形的面積為定值.
【解析】(1)將點A的坐標(biāo)代入反比例函數(shù)解析式,即可求出k值;(2)由于點A是反比例函數(shù)上一點,矩形ABOC的面積S=|k|.(3)設(shè)圖象上任一點的坐標(biāo)(x,y),根據(jù)矩形的面積公式,可得出結(jié)論.
【考點精析】本題主要考查了比例系數(shù)k的幾何意義的相關(guān)知識點,需要掌握幾何意義:表示反比例函數(shù)圖像上的點向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校準(zhǔn)備租用一批汽車,現(xiàn)有甲、乙兩種大客車,甲種客車每輛載客量45人,乙種客車每輛載客量30人,已知1輛甲種客車和3輛乙種客車共需租金1240元,3輛甲種客車和2輛乙種客車共需租金1760元.
(1)求1輛甲種客車和1輛乙種客車的租金分別是多少元?
(2)學(xué)校計劃租用甲、乙兩種客車共8輛,送330名師生集體外出活動,最節(jié)省的租車費用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將兩塊三角板的頂點重合.
(1)請寫出圖中所有以點為頂點且小于平角的角;
(2)你寫出的角中相等的角有________;
(3)若,試求的度數(shù);
(4)當(dāng)三角板繞點適當(dāng)旋轉(zhuǎn)(保持兩三角板有重合部分)時,與之間具有怎樣的數(shù)量關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一位射擊運動員在10次射擊訓(xùn)練中,命中靶的環(huán)數(shù)如圖. 請你根據(jù)圖表,完成下列問題:
(1)補充完成下面成績表單的填寫:
射擊序次 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成績/環(huán) | 8 | 10 | 7 | 9 | 10 | 7 | 10 |
(2)求該運動員這10次射擊訓(xùn)練的平均成績.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度數(shù);
(2)如圖2,AB∥CD,AB=CD,BF=DE,求證:∠AEF=∠CFB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知|,,且,求的值.
解:(1)因為,所以______;
因為,所以______;
又因為,
所以當(dāng)______時,______;
或當(dāng)______時,______,
∴______或_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,有下列5個結(jié)論:
①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac
其中正確的結(jié)論的有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABOD的頂點A是函數(shù)y=-x-(k+1)的圖象與函數(shù)y=在第二象限的圖象的交點,B,D兩點在坐標(biāo)軸上,且長方形ABOD的面積為3.
(1)求兩函數(shù)的表達式;
(2)求兩函數(shù)圖象的交點A,C的坐標(biāo);
(3)若點P是y軸上一動點,且S△APC=5,求點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com