【題目】如圖,在8×8的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是1,已知△ABC的三個(gè)頂點(diǎn)在格點(diǎn)上.

1)畫(huà)出△ABC關(guān)于直線l對(duì)稱的△A1B1C1

2)在直線l上找一點(diǎn)P,使PA+PB的長(zhǎng)最短;(不寫(xiě)作法,保留作圖痕跡)

3)△ABC   直角三角形(填不是),并說(shuō)明理由.

【答案】1)見(jiàn)解析;(2)見(jiàn)解析;(3)不是,理由見(jiàn)解析

【解析】

1)利用網(wǎng)格特點(diǎn)和軸對(duì)稱的性質(zhì)畫(huà)出A、BC關(guān)于直線l的對(duì)稱點(diǎn)A1、B1C1即可;

2)連接AB1交直線lP,則利用兩點(diǎn)之間線段最短可判斷P點(diǎn)滿足條件;

3)利用勾股定理的逆定理可判斷△ABC不是直角三角形.

1)如圖,△A1B1C1為所作;

2)如圖,點(diǎn)P為所作;

3))△ABC不是直角三角形.

理由如下:∵AC,BCAB,

而(2+22

AC2+BC2AB2,

∴△ABC不是直角三角形.

故答案為不是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于一個(gè)關(guān)于的代數(shù)式,若存在一個(gè)系數(shù)為正數(shù)關(guān)于的單項(xiàng)式,使 的結(jié)果是所有系數(shù)均為整數(shù)的整式,則稱單項(xiàng)式為代數(shù)式的“整系單項(xiàng)式” ,例如:

當(dāng) 時(shí),由于 ,故的整系單項(xiàng)式;

當(dāng) 時(shí),由于 ,故的整系單項(xiàng)式;

當(dāng) 時(shí),由于 ,故的整系單項(xiàng)式;

當(dāng) 時(shí),由于 ,故的整系單項(xiàng)式;

顯然,當(dāng)代數(shù)式存在整系單項(xiàng)式時(shí),有無(wú)數(shù)個(gè),現(xiàn)把次數(shù)最低,系數(shù)最小的整系單項(xiàng)式記為 ,例如: .

閱讀以上材料并解決下列問(wèn)題:

.判斷:當(dāng) 時(shí), 的整系單項(xiàng)式(填“是”或“不是”);

.當(dāng) 時(shí), = ;

.解方程:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y1=(x2)2m與x軸交于點(diǎn)A和B,與y軸交于點(diǎn)C,點(diǎn)D是點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn),若點(diǎn)A的坐標(biāo)為(1,0),直線y2=kx+b經(jīng)過(guò)點(diǎn)A,D.

(1)求拋物線的函數(shù)解析式;

(2)求點(diǎn)D的坐標(biāo)和直線AD的函數(shù)解析式;

(3)根據(jù)圖象指出,當(dāng)x取何值時(shí),y2>y1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了創(chuàng)建書(shū)香校園,去年又購(gòu)進(jìn)了一批圖書(shū).經(jīng)了解,科普書(shū)的單價(jià)比文學(xué)書(shū)的單價(jià)多4元,用1200元購(gòu)進(jìn)的科普書(shū)與用800元購(gòu)進(jìn)的文學(xué)書(shū)本數(shù)相等.

1)求去年購(gòu)進(jìn)的文學(xué)羽和科普書(shū)的單價(jià)各是多少元?

2)若今年文學(xué)書(shū)和科普書(shū)的單價(jià)和去年相比保持不變,該校打算用1000元再購(gòu)進(jìn)一批文學(xué)書(shū)和科普書(shū),問(wèn)購(gòu)進(jìn)文學(xué)書(shū)55本后至多還能購(gòu)進(jìn)多少本科普書(shū)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠C90°,AC4cm,BC3cm,若動(dòng)點(diǎn)P從點(diǎn)C開(kāi)始,沿CABC的路徑運(yùn)動(dòng)一周,且速度為每秒2cm,設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t_____時(shí),點(diǎn)P與△ABC的某兩個(gè)頂點(diǎn)構(gòu)成等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(問(wèn)題探究)小敏在學(xué)習(xí)了RtABC的性質(zhì)定理后,繼續(xù)進(jìn)行研究.

1)(i)她發(fā)現(xiàn)圖①中,如果∠A30°BCAB存在特殊的數(shù)量關(guān)系是   ;

ii)她將△ABC沿AC所在的直線翻折得△AHC,如圖②,此時(shí)她證明了BCAB的關(guān)系;請(qǐng)根據(jù)小敏證明的思路,補(bǔ)全探究的證明過(guò)程;

猜想:如果∠A30°BCAB存在特殊的數(shù)量關(guān)系是   ;

證明:△ABC沿AC所在的直線翻折得△AHC,

2)如圖③,點(diǎn)E、F分別在四邊形ABCD的邊BC、CD上,且∠B=∠D90°,連接AE、AF、EF,將△ABE、△ADF折疊,折疊后的圖形恰好能拼成與△AEF完全重合的三角形,連接AC,若∠EAF30°,AB227,則△CEF的周長(zhǎng)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了創(chuàng)建全國(guó)衛(wèi)生城市,某社區(qū)要清理一個(gè)衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車(chē)運(yùn)送,兩車(chē)各運(yùn)12趟可完成,需支付運(yùn)費(fèi)4800元.已知甲、乙兩車(chē)單獨(dú)運(yùn)完此堆垃圾,乙車(chē)所運(yùn)趟數(shù)是甲車(chē)的2倍,且乙車(chē)每趟運(yùn)費(fèi)比甲車(chē)少200元.

(1)求甲、乙兩車(chē)單獨(dú)運(yùn)完此堆垃圾各需運(yùn)多少趟?

(2)若單獨(dú)租用一臺(tái)車(chē),租用哪臺(tái)車(chē)合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊥BC,DC⊥BC,EBC上一點(diǎn),使得AE⊥DE;

(1)求證:△ABE∽△ECD;

(2)AB=4,AE=BC=5,求CD的長(zhǎng);

(3)當(dāng)△AED∽△ECD時(shí),請(qǐng)寫(xiě)出線段AD、AB、CD之間數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀與思考:利用多項(xiàng)式的乘法法則,可以得到,反過(guò)來(lái),則有利用這個(gè)式子可以將某些二次項(xiàng)系數(shù)是1的二次三項(xiàng)式分解因式。例如:將式子分解因式.這個(gè)式子的常數(shù)項(xiàng),一次項(xiàng)系數(shù),所以

解:

上述分解因式的過(guò)程,也可以用十字相乘的形式形象地表示:先分解二次項(xiàng)系數(shù),分別寫(xiě)在十字交叉線的左上角和左下角;再分解常數(shù)項(xiàng),分別寫(xiě)在十字交叉線的右上角和右下角;然后交叉相乘,求代數(shù)和,使其等于一次項(xiàng)系數(shù)(如圖).

請(qǐng)仿照上面的方法,解答下列問(wèn)題:

1)分解因式:;

2)分解因式:

3)若可分解為兩個(gè)一次因式的積,寫(xiě)出整數(shù)P的所有可能值.

查看答案和解析>>

同步練習(xí)冊(cè)答案