【題目】如圖,為半圓內(nèi)一點,為圓心,直徑長為,,,將繞圓心逆時針旋轉(zhuǎn)至,點在上,則邊掃過區(qū)域(圖中陰影部分)的面積為( )
A. B. C. D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=a(x+1)(x﹣3)與x軸交于A、B兩點,拋物線與x軸圍成的封閉區(qū)域(不包含邊界),僅有4個整數(shù)點時(整數(shù)點就是橫縱坐標均為整數(shù)的點),則a的取值范圍_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的四個頂點分別在正方形EFGH的四條邊上,我們稱正方形EFGH是正方形ABCD的外接正方形.
探究一:巳知邊長為1的正方形ABCD,是否存在一個外接正方形EFGH,它的面積是正方形ABCD面積的2倍?如圖,假設(shè)存在正方形EFGH,它的面積是正方形ABCD的2倍.
因為正方形ABCD的面積為1,則正方形EFGH的面積為2,
所以EF=FG=GH=HE=,設(shè)EB=x,則BF=﹣x,
∵Rt△AEB≌Rt△BFC
∴BF=AE=﹣x
在Rt△AEB中,由勾股定理,得
x2+(﹣x)2=12
解得,x1=x2=
∴BE=BF,即點B是EF的中點.
同理,點C,D,A分別是FG,GH,HE的中點.
所以,存在一個外接正方形EFGH,它的面積是正方形ABCD面積的2倍
探究二:巳知邊長為1的正方形ABCD,是否存在一個外接正方形EFGH,它的面積是正方形ABCD面積的3倍?(仿照上述方法,完成探究過程)
探究三:巳知邊長為1的正方形ABCD, 一個外接正方形EFGH,它的面積是正方形ABCD面積的4倍?(填“存在”或“不存在”)
探究四:巳知邊長為1的正方形ABCD,是否存在一個外接正方形EFGH,它的面積是正方形ABCD面積的n倍?(n>2)(仿照上述方法,完成探究過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲.乙兩人進行跑步訓(xùn)練,他們所跑的路程y(米)與時間x(秒)之間的關(guān)系如圖所示,則下列說法錯誤的是( )
A. 離終點40米處,乙追上甲B. 甲比乙遲3秒到終點
C. 甲跑步的速度是5米/秒D. 乙跑步的速度是米/秒
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機構(gòu)將今年紹興市民最關(guān)注的熱點話題分為消費.教育.環(huán)保.反腐及其它共五類.根據(jù)最近一次隨機調(diào)查的相關(guān)數(shù)據(jù),繪制的統(tǒng)計圖表如下:
根據(jù)以上信息解答下列問題:
(1)本次共調(diào)查_________人,請在答題卡上補全條形統(tǒng)計圖并標出相應(yīng)數(shù)據(jù);
(2)若紹興市約有500萬人口,請你估計最關(guān)注教育問題的人數(shù)約為多少萬人?
(3)在這次調(diào)查中,某單位共有甲.乙.丙.丁四人最關(guān)注教育問題,現(xiàn)準備從這四中隨機抽取兩人進行座談,求抽取的兩人恰好是甲和乙的概率(畫樹狀圖或列表說明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的弦,為半徑的中點,過作交弦于點,交于點,且是的切線.
(1)求證:;
(2)連接,,求;
(3)如果,,,求的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l:y=-2x-8分別與x軸,y軸相交于A,B兩點,點P(0,k)是y軸的負半軸上的一個動點,以P為圓心,3為半徑作⊙P.
(1)若⊙P與x軸有公共點,則k的取值范圍是______.
(2)連接PA,若PA=PB,試判斷⊙P與x軸的位置關(guān)系,并說明理由;
(3)當⊙P與直線l相切時,k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市某中學(xué)積極響應(yīng)創(chuàng)建全國文明城市活動,舉辦了以“校園文明”為主題的手抄報比賽.所有參賽作品均獲獎,獎項分為一等獎、二等獎、三等獎和優(yōu)秀獎,將獲獎結(jié)果繪制成如右兩幅統(tǒng)計圖.請你根據(jù)圖中所給信息解答意)
(1)等獎所占的百分比是________;三等獎的人數(shù)是________人;
(2)據(jù)統(tǒng)計,在獲得一等獎的學(xué)生中,男生與女生的人數(shù)比為,學(xué)校計劃選派1名男生和1名女生參加市手抄報比賽,請求出所選2位同學(xué)恰是1名男生和1名女生的概率;
(3)學(xué)校計劃從獲得二等獎的同學(xué)中選取一部分人進行集訓(xùn)使其提升為一等獎,要使獲得一等獎的人數(shù)不少于二等獎人數(shù)的2倍,那么至少選取多少人進行集訓(xùn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:我們知道,在四邊形ABCD中,當對角線,若,時,
(1)則四邊形ABCD的面積為 ;
小凱遇到一個問題:如圖1,在四邊形ABCD中,對角線AC、BD相交于點O,,,,求四邊形ABCD的面積。
小凱發(fā)現(xiàn),如圖2分別過點A、C作直線BD的垂線,垂足分別為點E,F,設(shè)AO為m,通過計算與的面積和使問題得以解決。
請回答:
(2)的面積為 (用含m的式子表示)
(3)求四邊形ABCD的面積。
參考小凱思考問題的方法,解決問題:如圖3,在四邊形ABCD中,對角線AC、BD相交于點O,,,(),則四邊形ABCD的面積為 (用含a,b,的式子表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com