如圖,在邊長為4的正三角形ABC中,AD⊥BC于點D,以AD為一邊向右作正三角形ADE.
(1)求△ABC的面積S;
(2)判斷AC、DE的位置關系,并給出證明.
(1)在正△ABC中,AD=AC×sin∠C=4×sin60°=4×
3
2
=2
3
,(2分)
∴S=
1
2
BC×AD=
1
2
×4×2
3
=4
3
.(3分)

(2)AC、DE的位置關系:AC⊥DE.(1分)
在△CDF中,∵∠CDE=90°-∠ADE=30°,(2分)
∴∠CFD=180°-∠C-∠CDE=180°-60°-30°=90°.
∴AC⊥DE.(3分)
(注:其它方法酌情給分).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

在等邊△ABC中,D、E分別在AC、BC上,且AD=CE=nAC,連AE、BD相交于P,過B作BQ⊥AE于點Q,連CP.
(1)∠BPQ=______,
PQ
BP
=______
(2)若BP⊥CP,求
AP
BP

(3)當n=______時,BP⊥CP?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知:點P是等邊△ABC內(nèi)任意一點,它到三邊的距離分別為h1、h2、h3,且滿足h1+h2+h3=6,則S△ABC=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,邊長為3的正△ABC中,M、N分別位于AC、BC上,且AM=1,BN=2.過C、M、N三點的圓交△ABC的一條對稱軸于另一點0.求證:點O是正△ABC的中心.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

將邊長分別為2、4、6的三個正三角形按如圖方式排列,A、B、C、D在同一直線上,則圖中陰影部分的面積的和為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

正三角形OAB的頂點O是原點,A點坐標是(-2,0),B點在第二象限,則B點的坐標是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在一個正方體的兩個面上畫了兩條對角線AB,AC,那么這兩條對角線的夾角等于______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知△ABC中,∠C=90°,∠B=60°,AC=4,等邊△DEF的一邊在直角邊AC上移動,當點E與點C重合時,點D恰好落在AB邊上,
(1)求等邊△DEF的邊長;
(2)請你探索,在移動過程中,線段CE與圖中哪條線段始終保持相等,并說明理由;
(3)若設線段CE為x,在移動過程中,等邊△DEF與Rt△ABC兩圖形重疊部分的面積為y.請你寫出y與x的函數(shù)關系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

附加題,學完“幾何的回顧”一章后,老師布置了一道思考題:
如圖,點M,N分別在正三角形ABC的BC,CA邊上,且BM=CN,AM,BN交于點Q.求證:∠BQM=60度.
(1)請你完成這道思考題;
(2)做完(1)后,同學們在老師的啟發(fā)下進行了反思,提出了許多問題,如:
①若將題中“BM=CN”與“∠BQM=60°”的位置交換,得到的是否仍是真命題?
②若將題中的點M,N分別移動到BC,CA的延長線上,是否仍能得到∠BQM=60°?
③若將題中的條件“點M,N分別在正三角形ABC的BC,CA邊上”改為“點M,N分別在正方形ABCD的BC,CD邊上”,是否仍能得到∠BQM=60°?…
請你作出判斷,在下列橫線上填寫“是”或“否”:①______;②______;③______.并對②,③的判斷,選擇一個給出證明.

查看答案和解析>>

同步練習冊答案