【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣ ,y2)、點(diǎn)C( ,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2 , 且x1<x2 , 則x1<﹣1<5<x2 . 其中正確的結(jié)論有( 。
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)

【答案】B
【解析】解:(1)正確.∵﹣ =2, ∴4a+b=0.故正確.(2)錯(cuò)誤.∵x=﹣3時(shí),y<0,
∴9a﹣3b+c<0,
∴9a+c<3b,故(2)錯(cuò)誤.(3)正確.由圖象可知拋物線經(jīng)過(﹣1,0)和(5,0),
解得 ,
∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,
∵a<0,
∴8a+7b=2c>0,故(3)正確.(4)錯(cuò)誤,∵點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣ ,y2)、點(diǎn)C( ,y3),
﹣2= ,2﹣(﹣ )= ,

∴點(diǎn)C離對(duì)稱軸的距離近,
∴y3>y2
∵a<0,﹣3<﹣ <2,
∴y1<y2
∴y1<y2<y3 , 故(4)錯(cuò)誤.(5)正確.∵a<0,
∴(x+1)(x﹣5)=﹣3/a>0,
即(x+1)(x﹣5)>0,
故x<﹣1或x>5,故(5)正確.
∴正確的有三個(gè),
故選B.

【考點(diǎn)精析】掌握二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系是解答本題的根本,需要知道二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時(shí),拋物線開口向上; a<0時(shí),拋物線開口向下b與對(duì)稱軸有關(guān):對(duì)稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市水產(chǎn)養(yǎng)殖專業(yè)戶王大爺承包了30畝水塘,分別養(yǎng)殖甲魚和桂魚,有關(guān)成本、銷售情況如下表:

養(yǎng)殖種類

成本(萬元/畝)

銷售額(萬元/畝)

甲魚

2.4

3

桂魚

2

2.5


(1)2010年,王大爺養(yǎng)殖甲魚20畝,桂魚10畝,求王大爺這一年共收益多少萬元?(收益=銷售額﹣成本)
(2)2011年,王大爺繼續(xù)用這30畝水塘全部養(yǎng)殖甲魚和桂魚,計(jì)劃投入成本不超過70萬元.若每畝養(yǎng)殖的成本、銷售額與2010年相同,要獲得最大收益,他應(yīng)養(yǎng)殖甲魚和桂魚各多少畝?
(3)已知甲魚每畝需要飼料500kg,桂魚每畝需要飼料700kg,根據(jù)(2)中的養(yǎng)殖畝數(shù),為了節(jié)約運(yùn)輸成本,實(shí)際使用的運(yùn)輸車輛每次裝載飼料的總量是原計(jì)劃每次裝載總量的2倍,結(jié)果運(yùn)輸養(yǎng)殖所需要全部飼料比原計(jì)劃減少了2次,求王大爺原定的運(yùn)輸車輛每次可裝載飼料多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于拋物線y=x2﹣2x+1,下列說法錯(cuò)誤的是(  )
A.開口向上
B.與x軸有兩個(gè)重合的交點(diǎn)
C.對(duì)稱軸是直線x=1
D.當(dāng)x>1時(shí),y隨x的增大而減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】任意一條線段EF,其垂直平分線的尺規(guī)作圖痕跡如圖所示.若連接EH,HF,F(xiàn)G,GE,則下列結(jié)論中,不一定正確的是( 。
A.△EGH為等腰三角形
B.△EGF為等邊三角形
C.四邊形EGFH為菱形
D.△EHF為等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=6,AC=8,BC=10,D是△ABC內(nèi)部或BC邊上的一個(gè)動(dòng)點(diǎn)(與B、C不重合),以D為頂點(diǎn)作△DEF,使△DEF∽△ABC(相似比k>1),EF∥BC.

(1)求∠D的度數(shù);
(2)若兩三角形重疊部分的形狀始終是四邊形AGDH.
①如圖1,連接GH、AD,當(dāng)GH⊥AD時(shí),請(qǐng)判斷四邊形AGDH的形狀,并證明;
②當(dāng)四邊形AGDH的面積最大時(shí),過A作AP⊥EF于P,且AP=AD,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:﹣|﹣1|+ cos30°﹣(﹣ 2+(π﹣3.14)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,經(jīng)過點(diǎn)A的直線y=﹣ x+b與拋物線的另一個(gè)交點(diǎn)為D.

(1)若點(diǎn)D的橫坐標(biāo)為2,求拋物線的函數(shù)解析式;
(2)若在第三象限內(nèi)的拋物線上有點(diǎn)P,使得以A、B、P為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)P的坐標(biāo);
(3)在(1)的條件下,設(shè)點(diǎn)E是線段AD上的一點(diǎn)(不含端點(diǎn)),連接BE.一動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿線段BE以每秒1個(gè)單位的速度運(yùn)動(dòng)到點(diǎn)E,再沿線段ED以每秒 個(gè)單位的速度運(yùn)動(dòng)到點(diǎn)D后停止,問當(dāng)點(diǎn)E的坐標(biāo)是多少時(shí),點(diǎn)Q在整個(gè)運(yùn)動(dòng)過程中所用時(shí)間最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用水平線和豎起線將平面分成若干個(gè)邊長為1的小正方形格子,小正方形的頂點(diǎn)稱為格點(diǎn),以格點(diǎn)為頂點(diǎn)的多邊形稱為格點(diǎn)多邊形.設(shè)格點(diǎn)多邊形的面積為S,該多邊形各邊上的格點(diǎn)個(gè)數(shù)和為a,內(nèi)部的格點(diǎn)個(gè)數(shù)為b,則S= a+b﹣1(史稱“皮克公式”).
小明認(rèn)真研究了“皮克公式”,并受此啟發(fā)對(duì)正三角形網(wǎng)格中的類似問題進(jìn)行探究:正三角形網(wǎng)格中每個(gè)小正三角形面積為1,小正三角形的頂點(diǎn)為格點(diǎn),以格點(diǎn)為頂點(diǎn)的多邊形稱為格點(diǎn)多邊形,下圖是該正三角形格點(diǎn)中的兩個(gè)多邊形:

根據(jù)圖中提供的信息填表:

格點(diǎn)多邊形各邊上的格點(diǎn)的個(gè)數(shù)

格點(diǎn)多邊形內(nèi)部的格點(diǎn)個(gè)數(shù)

格點(diǎn)多邊形的面積

多邊形1

8

1

多邊形2

7

3

一般格點(diǎn)多邊形

a

b

S

則S與a、b之間的關(guān)系為S=(用含a、b的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=﹣(x﹣1)2+5,當(dāng)m≤x≤n且mn<0時(shí),y的最小值為2m,最大值為2n,則m+n的值為(  )
A.
B.2
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案