【題目】如圖,已知一次函數(shù)y=k1x+b的圖象分別與x軸、y軸的正半軸交于 A,B 兩點,且與反比例函數(shù)y=交于 C,E 兩點,點 C 在第二象限,過點 C 作CD⊥x軸于點 D,AC=2,OA=OB=1.
(1)△ADC 的面積;
(2)求反比例函數(shù)y= 與一次函數(shù)的y=k1x+b表達(dá)式.
【答案】(1)2;(2)反比例函數(shù)的表達(dá)式為y=﹣;一次函數(shù)的表達(dá)式為y=﹣x+1.
【解析】試題分析:(1)求出 解直角三角形求出根據(jù)三角形的面積公式求出即可;
(2)把C的坐標(biāo)代入反比例函數(shù)的解析式,即可求出,把的坐標(biāo)代入一次函數(shù)的解析式,即可求出b和k1.
試題解析:(1)∵OA=OB,
,
∵CD⊥x軸于D,
∴,
∴,
∴CD=AD,
∵
∴
∴△ADC的面積為:
(2)∵OA=1,AD=2,
∴OD=1,
∵CD=2,
∴C的坐標(biāo)為(1,2),
∵點C在反比例函數(shù)的圖象上,
∴
∴
∴反比例函數(shù)的表達(dá)式為
∵一次函數(shù)過B(0,1),C(1,2),
∴代入得:
解得:
∴一次函數(shù)的表達(dá)式為y=x+1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校準(zhǔn)備建一條5米寬的文化長廊,并按下圖方式鋪設(shè)邊長為1米的正方形地磚,圖中陰影部分為彩色地磚,白色部分為普通地磚.
(1)如果長廊長8米,則需要彩色地磚 塊,普通地磚 塊;
(2)如果長廊長2a米(a為正整數(shù)),則需要彩色地磚 塊;
(3)購買時,恰逢地磚市場地磚促銷,彩色地磚原價為100元/塊,普通地磚原價為40元/塊,優(yōu)惠方案為:買一塊彩色地磚贈送一塊普通地磚.
①如果長廊長x米(x為整數(shù)),用含x代數(shù)式表示購買地磚所需的錢數(shù);
②當(dāng)x=51米時,求購買地磚所需錢數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,對角線AC、BD相交于點O,E是CD中點,連結(jié)OE.過點C作CF∥BD交線段OE的延長線于點F,連結(jié)DF.求證:
(1)△ODE≌△FCE;
(2)四邊形ODFC是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,點、是正方形內(nèi)兩點,,,為探索這個圖形的特殊性質(zhì),某數(shù)學(xué)興趣小組經(jīng)歷了如下過程:
(1)在圖1中,連接,且
①求證:與互相平分;
②求證:;
(2)在圖2中,當(dāng),其它條件不變時,是否成立?若成立,請證明:若不成立,請說明理由.
(3)在圖3中,當(dāng),,時,求之長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在一條直線道路上分別從相距1500米的A,B 兩點同時出發(fā),相向而行,當(dāng)兩人相遇后,甲繼續(xù)向點B前進(jìn)(甲到達(dá)點B時停止運動),乙也立即向B點返回.在整個運動過程中,甲、乙均保持勻速運動.甲、乙兩人之間的距離y(米)與乙運動的時間x(秒) 之間的關(guān)系如圖所示.則甲到B點時,乙距B點的距離是________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】骰子是一種特別的數(shù)字立方體(見下圖),它符合規(guī)則:相對兩面的點數(shù)之和總是7,下面四幅圖中可以折成符合規(guī)則的骰子的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】發(fā)現(xiàn)問題、探索規(guī)律,要有一雙敏銳的雙眼,下面的圖形是由邊長為1的小正方形按照某種規(guī)律排列而成的.
(1)觀察圖形,填寫下表:
圖形個數(shù)(n) | (1) | (2) | (3) |
正方形的個數(shù) | 8 |
|
|
圖形的周長 | 18 |
|
|
(2)推測第n個圖形中,正方形有 個,周長為 .
(3)寫出第30個圖形的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一快遞員需要在規(guī)定時間內(nèi)開車將快遞送到某地,若快遞員開車每分鐘行駛1.2,就早到10分鐘;若快遞員開車每分鐘行駛0.8,就要遲到5分鐘.試求出規(guī)定時間及快遞員所行駛的總路程.
小明和小新在解答時先設(shè)出未知數(shù),然后列出方程如下:
①,②,其中方程①由小明所列,方程②由小新所列.
(1)小明所設(shè)表示 ;
小新所設(shè)表示 .
(2)請選小明或小新的方法寫出完整的解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中:
①0是最小的整數(shù);
②有理數(shù)不是正數(shù)就是負(fù)數(shù);
③正整數(shù)、負(fù)整數(shù)、正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱為有理數(shù);
④非負(fù)數(shù)就是正數(shù);
⑤不僅是有理數(shù),而且是分?jǐn)?shù);
⑥是無限不循環(huán)小數(shù),所以不是有理數(shù);
⑦無限小數(shù)不都是有理數(shù);
⑧正數(shù)中沒有最小的數(shù),負(fù)數(shù)中沒有最大的數(shù).
其中錯誤的說法的個數(shù)為( 。
A.7個B.6個C.5個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com