【題目】正方形具有而菱形不一定具有的性質(zhì)是(

A. 對(duì)角線相等B. 對(duì)角線互相垂直平分

C. 對(duì)角線平分一組對(duì)角D. 四條邊相等

【答案】A

【解析】

試題正方形的性質(zhì)有:四條邊都相等,四個(gè)角都是直角,對(duì)角線互相平分垂直且相等,而且平分一組對(duì)角;菱形的性質(zhì)有:四條邊都相等,對(duì)角線互相垂直平分.由此可得正方形具有而菱形不一定具有的性質(zhì)是對(duì)角線相等.故答案選A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一副直角三角板如圖放置,點(diǎn)C在FD的延長(zhǎng)線上,ABCF,F=ACB=90°,E=45°,A=60°,AC=10,試求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,半圓O的直徑AB=10cm,弦AC=6cm,AD平分BAC,則AD的長(zhǎng)為(

Acm Bcm Ccm D4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2x+3y=5,6x+9y+10等于__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 “已知:正比例函數(shù)y1=kx(k0)與反比例函數(shù)y2=(m0)圖象相交于A、B兩點(diǎn),其橫坐標(biāo)分別是1和﹣1,求不等式kx的解集.”對(duì)于這道題,某同學(xué)是這樣解答的:“由圖象可知:當(dāng)x1或﹣1x0時(shí),y1y2,所以不等式kx的解集是x1或﹣1x0”.他這種解決問(wèn)題的思路體現(xiàn)的數(shù)學(xué)思想方法是( )

A.?dāng)?shù)形結(jié)合 B.轉(zhuǎn)化 C.類(lèi)比 D.分類(lèi)討論

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)國(guó)家的節(jié)能減排政策,某廠家開(kāi)發(fā)了一種新型的電動(dòng)車(chē),如圖,它的大燈A射出的光線ABAC與地面MN的夾角分別為22°31°,ATMN,垂足為T,大燈照亮地面的寬度BC的長(zhǎng)為m

1)求BT的長(zhǎng)(不考慮其他因素).

2)一般正常人從發(fā)現(xiàn)危險(xiǎn)到做出剎車(chē)動(dòng)作的反應(yīng)時(shí)間是0.2s,從發(fā)現(xiàn)危險(xiǎn)到電動(dòng)車(chē)完全停下所行駛的距離叫做最小安全距離.某人以20km/h的速度駕駛該車(chē),從做出剎車(chē)動(dòng)作到電動(dòng)車(chē)停止的剎車(chē)距離是,請(qǐng)判斷該車(chē)大燈的設(shè)計(jì)是否能滿(mǎn)足最小安全距離的要求(大燈與前輪前端間水平距離忽略不計(jì)),并說(shuō)明理由.

(參考數(shù)據(jù):sin22°≈,tan22°≈,sin31°≈,tan31°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:﹣10+8÷﹣22﹣4×﹣3);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】鞋店老板去進(jìn)貨時(shí),他必須了解近期各種尺碼的鞋銷(xiāo)售情況,他應(yīng)該最關(guān)心統(tǒng)計(jì)量中的( 。

A. 眾數(shù) B. 中位數(shù) C. 平均數(shù) D. 方差

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一組數(shù)據(jù)13,x,4,5,6的平均數(shù)是4,則這組數(shù)據(jù)的眾數(shù)是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案