【題目】(1)根據(jù)畫函數(shù)圖象的步驟,在如圖的直角坐標(biāo)系中,畫出函數(shù)y=|x|的圖象;

(2)求證:無(wú)論m取何值,函數(shù)y=mx﹣2(m﹣1)的圖象經(jīng)過(guò)的一個(gè)確定的點(diǎn);

(3)若(1),(2)中兩圖象圍成圖形的面積剛好為2,求m值.

【答案】1)作圖見(jiàn)解析;(2)證明見(jiàn)解析;(3m=

【解析】

試題本題主要考查的是一次函數(shù)的圖象和性質(zhì),掌握一次函數(shù)的圖象和性質(zhì)是解題的關(guān)鍵.

1)將函數(shù)y=|x|,變形為y=xx≥0),y=﹣xx≤0),然后利用兩點(diǎn)法畫出函數(shù)圖象即可;

2)將函數(shù)解析式變形為:y=x﹣2+2,從而可知直線經(jīng)過(guò)點(diǎn)(22);

3)首先由勾股定理求得OC的長(zhǎng),然后根據(jù)三角形的面積為2,可求得OD的長(zhǎng)度,從而可得到點(diǎn)D的坐標(biāo),將點(diǎn)D的坐標(biāo)代入函數(shù)解析式可求得m的值.

試題解析:解:(1)當(dāng)x≥0時(shí),y=|x|=x,即y=xx≥0),將x=0代入得:y=0;將x=1代入得:y=1,

當(dāng)x≤0時(shí),y=|x|=﹣x,即y=﹣xx≤0),將x=0代入得:y=0;將x=﹣1代入得:y=1

過(guò)點(diǎn)O00),A﹣1,1)作射線OA,過(guò)點(diǎn)00,0),B1,1)作射線OB,

函數(shù)y=|x|的圖象如圖所示:

2∵y=mx﹣2m﹣1=mx﹣2+2

∴x﹣2=0,y=2

∴x=2y=2,

即函數(shù)圖象過(guò)定點(diǎn)(2,26分)

3)如下圖:

函數(shù)y=mx﹣2m﹣1)的圖象經(jīng)過(guò)頂點(diǎn)(2,2

∴OC==2

ODOC=2,

∴OD=

所以點(diǎn)D的坐標(biāo)為(﹣1,1).

x=﹣1,y=1代入y=mx﹣2m﹣1)得:m=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校舉辦“大愛(ài)鎮(zhèn)江”征文活動(dòng),小明為此次活動(dòng)設(shè)計(jì)了一個(gè)以三座山為背景的圖標(biāo)(如圖),現(xiàn)用紅、黃兩種顏色對(duì)圖標(biāo)中的A、B、C三塊三角形區(qū)域分別涂色,一塊區(qū)域只涂一種顏色.

(1)請(qǐng)用樹(shù)狀圖列出所有涂色的可能結(jié)果;
(2)求這三塊三角形區(qū)域中所涂顏色是“兩塊黃色、一塊紅色”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為加強(qiáng)學(xué)生身體鍛煉,某校開(kāi)展體育“大課間”活動(dòng),學(xué)校決定在學(xué)生中開(kāi)設(shè)A:籃球,B:立定跳遠(yuǎn),C:跳繩,D:跑步,E:排球五種活動(dòng)項(xiàng)目.為了了解學(xué)生對(duì)五種項(xiàng)目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖所示的兩個(gè)統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中的信息解答下列問(wèn)題:

(1)在這項(xiàng)調(diào)查中,共調(diào)查了名學(xué)生;
(2)請(qǐng)將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校有1200名在校學(xué)生,請(qǐng)估計(jì)喜歡排球的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)區(qū)“美麗廣西 清潔鄉(xiāng)村”的號(hào)召,某校開(kāi)展“美麗廣西 清潔校園”的活動(dòng),該校經(jīng)過(guò)精心設(shè)計(jì),計(jì)算出需要綠化的面積為498m2 , 綠化150m2后,為了更快的完成該項(xiàng)綠化工作,將每天的工作量提高為原來(lái)的1.2倍.結(jié)果一共用20天完成了該項(xiàng)綠化工作.該項(xiàng)綠化工作原計(jì)劃每天完成多少m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】[感知發(fā)現(xiàn)]:如圖,是一個(gè)“豬手”圖,ABCD,點(diǎn)E在兩平行線之間,連接BE,DE ,我們發(fā)現(xiàn):∠E=B+D

證明如下:過(guò)E點(diǎn)作EFAB

B=1(兩直線平行,內(nèi)錯(cuò)角相等.)

ABCD(已知)

CDEF(如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行.)

2=D(兩直線平行,內(nèi)錯(cuò)角相等.)

1+2=B+D(等式的性質(zhì)1.)

即:∠E=B+D

[類比探究]:如圖是一個(gè)“子彈頭”圖,ABCD,點(diǎn)E在兩平行線之間,連接BEDE.試探究∠E+B+D=360°.寫出證明過(guò)程.

[創(chuàng)新應(yīng)用]:

(1).如圖一,是兩塊三角板按如圖所示的方式擺放,使直角頂點(diǎn)重合,斜邊平行,請(qǐng)直接寫出∠1的度數(shù).

(2).如圖二,將一個(gè)長(zhǎng)方形ABCD按如圖的虛線剪下,使∠1=120,∠FEQ=90°. 請(qǐng)直接寫出∠2的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的一塊地,∠ADC90°AD12m,CD9m,AB39m,BC36m,求這塊地的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道對(duì)于一個(gè)圖形,通過(guò)不同的方法計(jì)算圖形的面積可以得到一個(gè)數(shù)學(xué)等式.例如:由圖1可得到.

1)寫出由圖2所表示的數(shù)學(xué)等式:________.

2)寫出由圖3所表示的數(shù)學(xué)等式:________.

3)已知實(shí)數(shù),滿足,.

①求的值.

②求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其中部分圖象如圖所示,下列結(jié)論錯(cuò)誤的是( )

A.4ac<b2
B.方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3;
C.當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3
D.當(dāng)x<0時(shí),y隨x增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在四邊形OABC中,AB∥OC,BC⊥x軸于點(diǎn)C,A(2,﹣2),B(6,﹣2),動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿著x軸正方向以每秒2個(gè)單位的速度移動(dòng),過(guò)點(diǎn)P作PQ垂直于直線OA,垂足為點(diǎn)Q,設(shè)點(diǎn)P移動(dòng)的時(shí)間t秒(0<t<4).△OPQ與四邊形OABC重疊部分的面積為S.

(1)求經(jīng)過(guò)O、A、B三點(diǎn)的拋物線的解析式;
(2)若將△OPQ沿著直線PQ翻折得到△O′PQ,則當(dāng)t=時(shí),點(diǎn)O′恰好在拋物線上.
(3)在(2)的條件下,記△O′PQ與四邊形OABC重疊的面積為S,求S與t的函數(shù)關(guān)系式,并注明自變量的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案