精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知ABCD,CE、BE的交點為E,現作如下操作:

第一次操作,分別作∠ABE和∠DCE的平分線,交點為E1,

第二次操作,分別作∠ABE1和∠DCE1的平分線,交點為E2

第三次操作,分別作∠ABE2和∠DCE2的平分線,交點為E3,…,

n次操作,分別作∠ABEn1和∠DCEn1的平分線,交點為En.

(1)如圖①,求證:∠BEC=ABE+DCE;

(2)如圖②,求證:∠BE2C=BEC;

(3)猜想:若∠En度,那∠BEC等于多少度?(直接寫出結論).

【答案】(1)證明見解析;(2)證明見解析;(3)∠BEC等于2nα度.

【解析】試題1)先過EEFAB,根據ABCD得出ABEFCD再根據平行線的性質,得出∠B=1C=2,進而得到∠BEC=ABE+∠DCE

2)先根據∠ABE和∠DCE的平分線交點為E1,運用(1)中的結論,得出∠CE1B=ABE1+∠DCE1=ABE+DCE=BEC;同理可得∠BE2C=ABE2+∠DCE2=ABE1+DCE1=CE1B=BEC;

3)根據∠ABE2和∠DCE2的平分線,交點為E3,得出∠BE3C=BEC;…據此得到規(guī)律∠En=BEC,最后求得∠BEC的度數.

試題解析:(1)如圖①,EEFABABCDABEFCD,∴∠B=1C=2∵∠BEC=1+∠2,∴∠BEC=ABE+∠DCE

2)如圖2∵∠ABE和∠DCE的平分線交點為E1,∴由(1)可得CE1B=ABE1+∠DCE1=ABE+DCE=BEC;

∵∠ABE1和∠DCE1的平分線交點為E2,∴由(1)可得BE2C=ABE2+∠DCE2=ABE1+DCE1=CE1B=BEC;

3)如圖2∵∠ABE2和∠DCE2的平分線交點為E3,∴∠BE3C=ABE3+∠DCE3=ABE2+DCE2=CE2B=BEC

以此類推,En=BEC,∴當∠En度時,BEC等于2nα度.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖①,在一條筆直的公路上有M、P、N三個地點,M、P兩地相距20km,甲開汽車,乙騎自行車分別從M、P兩地同時出發(fā),勻速前往N地,到達N地后停止運動.已知乙騎自行車的速度為20km/h,甲,乙兩人之間的距離y(km)與乙行駛的時間t(h)之間的關系如圖②所示.
(1)M、N兩地之間的距離為km;
(2)求線段BC所表示的y與t之間的函數表達式;
(3)若乙到達N地后,甲,乙立即以各自原速度返回M地,請在圖②所給的直角坐標系中補全函數圖象.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】中華文明,源遠流長;中華詩詞,寓意深廣.為了傳承優(yōu)秀傳統(tǒng)文化,我市某校團委組織了一次全校2000名學生參加的中國詩詞大會海選比賽,賽后發(fā)現所有參賽學生的成績均不低于50分,為了更好地了解本次海選比賽的成績分布情況,隨機抽取了其中200名學生的海選比賽成績(成績x取整數,總分100分)作為樣本進行整理,得到下列統(tǒng)計圖表:

請根據所給信息,解答下列問題:

(1)請把圖1中的條形統(tǒng)計圖補充完整;

(2)在圖2的扇形統(tǒng)計圖中,記表示B組人數所占的百分比為a%,則a的值為   ,表示C組扇形的圓心角θ的度數為   度;

(3)規(guī)定海選成績在90分以上(包括90分)記為優(yōu)等,請估計該校參加這次海選比賽的2000名學生中成績優(yōu)等的有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市出租車計費方法如圖所示,xkm)表示行駛里程,y(元)表示車費,請根據圖象回答下面的問題:

1)出租車的起步價是多少元?當x3時,求y關于x的函數關系式.

2)若某乘客有一次乘出租車的車費為32元,求這位乘客乘車的里程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,兩個不同的一次函數y=ax+by=bx+a的圖象在同一平面直角坐標系內的位置可能是(  )

A. A B. B C. C D. D

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC,D、E分別是邊BC、AC的中點,過點AAFBCDE的延長線于點F,連接AD、CF.

(1)求證:四邊形ADCF是平行四邊形;

(2)ABC滿足什么條件時,四邊形ADCF是菱形?為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(慶陽中考)現在的青少年由于沉迷電視、手機、網絡游戲等,視力日漸減退,某市為了了解學生的視力變化情況,從全市九年級隨機抽取了1 500名學生,統(tǒng)計了每個人連續(xù)三年視力檢查的結果,根據視力在4.9以下的人數變化制成折線統(tǒng)計圖,并對視力下降的主要因素進行調查,制成扇形統(tǒng)計圖.

解答下列問題:

(1)圖中D所在扇形的圓心角度數為______;

(2)2016年全市共有30 000名九年級學生,請你估計視力在4.9以下的學生約有多少名?

(3)根據扇形統(tǒng)計圖信息,你覺得中學生應該如何保護視力?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點CD,在直線CD上有一點P

1)如果P點在CD之間運動時,問∠PAC,∠APB,∠PBD有怎樣的數量關系?請說明理由.

2)若點PC、D兩點的外側運動時(P點與點C、D不重合),試探索∠PAC,∠APB,∠PBD之間的關系又是如何?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知整數滿足下列條件:=0,=﹣|+1|,=﹣|+2|,=﹣|+3|,……以此類推,則的值為( 。

A. ﹣1007 B. ﹣1008 C. ﹣1009 D. ﹣2018

查看答案和解析>>

同步練習冊答案