【題目】定義:點(diǎn)P(a,b)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為P',以PP'為邊作等邊△PP'C,則稱點(diǎn)C為P的“等邊對(duì)稱點(diǎn)”;
(1)若P(1,),求點(diǎn)P的“等邊對(duì)稱點(diǎn)”的坐標(biāo).
(2)若P點(diǎn)是雙曲線y=(x>0)上一動(dòng)點(diǎn),當(dāng)點(diǎn)P的“等邊對(duì)稱點(diǎn)”點(diǎn)C在第四象限時(shí),
①如圖(1),請(qǐng)問點(diǎn)C是否也會(huì)在某一函數(shù)圖象上運(yùn)動(dòng)?如果是,請(qǐng)求出此函數(shù)的解析式;如果不是,請(qǐng)說明理由.
②如圖(2),已知點(diǎn)A(1,2),B(2,1),點(diǎn)G是線段AB上的動(dòng)點(diǎn),點(diǎn)F在y軸上,若以A、G、F、C這四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求點(diǎn)C的縱坐標(biāo)yc的取值范圍.
【答案】(1)(3,);(2)①是,y=﹣(x>0);②yc≤﹣6或﹣3<yc≤﹣2
【解析】
(1)P(1,)則P'(﹣1,﹣),可求PP'=4;設(shè)C(m,n),有PC=P'C=4,通過解方程可得m=﹣n,再進(jìn)行運(yùn)算即可;
(2)①設(shè)P(c,)則P'(﹣c,﹣),可求PP'=2 ;設(shè)C(s,t),有PC=P'C=2,通過解方程可得s=﹣,t=c,令 ,消元c即可得xy=﹣6;
②當(dāng)AG為平行四邊形的邊時(shí),G與B重合時(shí),為一臨界點(diǎn)通過平移可求得C(1,﹣6),yc≤﹣6;
當(dāng)AG為平行四邊形的對(duì)角線時(shí),G與B重合時(shí),求得C(3,﹣2),G與A重合時(shí),C(2,﹣3),此時(shí)﹣3<yc≤﹣2.
解:(1)∵P(1,),
∴P'(﹣1,﹣),
∴PP'=4,
設(shè)C(m,n),
∴等邊△PP′C,
∴PC=P'C=4,
∴ ,
∴m=﹣n,
∴(﹣n﹣1)2+(n﹣)2=16.
解得n=或﹣,
∴m=﹣3或m=3.
如圖1,觀察點(diǎn)C位于第四象限,則C(﹣3,).即點(diǎn)P的“等邊對(duì)稱點(diǎn)”的坐標(biāo)是(3,).
(2)①設(shè)P(c,),
∴P'(﹣c,﹣),
∴PP'=2,
設(shè)C(s,t),
PC=P'C=2,
∴,
∴s=﹣,
∴t2=3c2,
∴t=c,
∴C(﹣,c)或C(,﹣c),
∴點(diǎn)C在第四象限,c>0,
∴C(,﹣c),
令,
∴xy=﹣6,即y=﹣(x>0);
②當(dāng)AG為平行四邊形的邊時(shí),G與B重合時(shí),為一臨界點(diǎn)通過平移可求得C(1,﹣6),
∴yc≤﹣6;
當(dāng)AG為平行四邊形的對(duì)角線時(shí),G與B重合時(shí),求得C(3,﹣2),
G與A重合時(shí),C(2,﹣3),
此時(shí)﹣3<yc≤﹣2,
綜上所述:yc≤﹣6或﹣3<yc≤﹣2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是我國(guó)古代城市用以滯洪或分洪系統(tǒng)的局部截面原理圖,圖中OP為下水管道口直徑,OB為可繞轉(zhuǎn)軸O自由轉(zhuǎn)動(dòng)的閥門.平時(shí)閥門被管道中排出的水沖開,可排出城市污水;當(dāng)河水上漲時(shí),閥門會(huì)因河水壓迫而關(guān)閉,以防河水倒灌入城中.若閥門的直徑OB=OP=100cm,OA為檢修時(shí)閥門開啟的位置,且OA=OB.
(1)直接寫出閥門被下水道的水沖開與被河水關(guān)閉過程中∠POB的取值范圍;
(2)為了觀測(cè)水位,當(dāng)下水道的水沖開閥門到達(dá)OB位置時(shí),在點(diǎn)A處測(cè)得俯角∠CAB=67.5°,若此時(shí)點(diǎn)B恰好與下水道的水平面齊平,求此時(shí)下水道內(nèi)水的深度.(結(jié)果保留小數(shù)點(diǎn)后一位)
(=1.41,sin67.5°=0.92,cos67.5°=0.38,tan67.5°=2.41,sin22.5°=0.38,cos22.5°=0.92,tan22.5°=0.41)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘船以每小時(shí)30海里的速度向北偏東75°方向航行,在點(diǎn) 處測(cè)得碼頭 的船的東北方向,航行40分鐘后到達(dá)處,這時(shí)碼頭恰好在船的正北方向,在船不改變航向的情況下,求出船在航行過程中與碼頭的最近距離.(結(jié)果精確的0.1海里,參考數(shù)據(jù) )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的頂點(diǎn)B在⊙O上. AC經(jīng)過圓心0并與圓相交于點(diǎn)D,C,過C作直線CE丄AB,交AB的延長(zhǎng)線于點(diǎn)E,且CB平分∠ACE.
(1)求證:AB是圓O的切線;
(2)若BE=3,CE=4,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校八年級(jí)共400名學(xué)生,為了解該年級(jí)學(xué)生的視力情況,從中隨機(jī)抽取40名學(xué)生的視力數(shù)據(jù)作為樣本,數(shù)據(jù)統(tǒng)計(jì)如下:
4.2 4.1 4.7 4.1 4.3 4.3 4.4 4.6 4.1 5.2
5.2 4.5 5.0 4.5 4.3 4.4 4.8 5.3 4.5 5.2
4.4 4.2 4.3 5.3 4.9 5.2 4.9 4.8 4.6 5.1
4.2 4.4 4.5 4.1 4.5 5.1 4.4 5.0 5.2 5.3
根據(jù)數(shù)據(jù)繪制了如下的表格和統(tǒng)計(jì)圖:
等級(jí) | 視力(x) | 頻數(shù) | 頻率 |
4 | 0.1 | ||
12 | 0.3 | ||
10 | 0.25 | ||
合計(jì) | 40 | 1 |
根據(jù)上面提供的信息,回答下列問題:
(1)統(tǒng)計(jì)表中的 , ;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)估計(jì)該校八年級(jí)學(xué)生視力為“級(jí)”的有多少人?
(4)該年級(jí)學(xué)生會(huì)宣傳部有2名男生和2名女生,現(xiàn)從中隨機(jī)挑選2名同學(xué)參加“防控近視,愛眼護(hù)眼”宣傳活動(dòng),請(qǐng)用樹狀圖法或列表法求出恰好選中“1男1女”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】央視“經(jīng)典詠流傳”開播以來受到社會(huì)廣泛關(guān)注.我市某校就“中華文化我傳承——地方戲曲進(jìn)校園”的喜愛情況進(jìn)行了隨機(jī)調(diào)查,對(duì)收集的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩副尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖所提供的信息解答下列問題:
圖中A表示“很喜歡”,B表示“喜歡”,C表示“一般”,D表示“不喜歡”.
(1)被調(diào)查的總?cè)藬?shù)是_____________人,扇形統(tǒng)計(jì)圖中C部分所對(duì)應(yīng)的扇形圓心角的度數(shù)為_______.
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校共有學(xué)生1800人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該校學(xué)生中A類有__________人;
(4)在抽取的A類5人中,剛好有3個(gè)女生2個(gè)男生,從中隨機(jī)抽取兩個(gè)同學(xué)擔(dān)任兩角色,用樹形圖或列表法求出被抽到的兩個(gè)學(xué)生性別相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,∠BAC=20°,點(diǎn)O是AB的中點(diǎn),將OB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)α角時(shí)(0°<α<180°),得到OP,當(dāng)△ACP為等腰三角形時(shí),α的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AD、BD分別是的內(nèi)角∠BAC、∠ABC的平分線,過點(diǎn)A作AE⊥AD,交BD的延長(zhǎng)線于點(diǎn)E.
(1)求證:;
(2)如圖2,如果AE=AB,且BD:DE=2:3,求BC:AB的值;
(3)如果∠ABC是銳角,且與相似,求∠ABC的度數(shù),并直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】青白江鳳凰湖濕地公園是一處具有國(guó)際水準(zhǔn)的旅游度假區(qū),以生態(tài)、休閑、水景環(huán)境及具有多國(guó)風(fēng)情的建筑為特色.如圖為鳳凰湖濕地公園三個(gè)景點(diǎn)A,B,C的平面示意圖,景點(diǎn)C在B的正北方向4千米處,景點(diǎn)A在B的東北方向,在C的北偏東75°方向上,求景點(diǎn)A、B之間的距離.(結(jié)果保留根號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com