【題目】如圖①所示,在直角梯形ABCD中,∠BAD=90°,E是直線AB上一點,過E作直線//BC,交直線CD于點F.將直線向右平移,設(shè)平移距離BE為(t0),直角梯形ABCD被直線掃過的面積(圖中陰影部份)為S,S關(guān)于的函數(shù)圖象如圖②所示,OM為線段,MN為拋物線的一部分,NQ為射線,N點橫坐標為4.
信息讀取
(1)梯形上底的長AB= ;(2) 直角梯形ABCD的面積= ;
圖象理解
(3)寫出圖②中射線NQ表示的實際意義;(4) 當時,求S關(guān)于的函數(shù)關(guān)系式;
問題解決
(5)當t為何值時,直線l將直角梯形ABCD分成的兩部分面積之比為1: 3.
【答案】(1)、2;(2)、12;(3)、當平移距離BE大于等于4時,直角梯形ABCD被直線掃過的面積恒為12;(4)、S=-+8t-4;(5)、或
【解析】
試題分析:(1)、當點E到達點A時,面積成一次函數(shù),則AB=2;(2)、根圖示得出梯形的面積;(3)、根據(jù)函數(shù)圖形得出實際意義;(4)、首先根題意畫出圖形,然后利用直角梯形的面積減去直角三角形DOF的面積得出函數(shù)解析式;(5)、分成0<t<2和2<t<4兩種情況分別進行計算.
試題解析:(1)、 .
(2)、S梯形ABCD=12 .
(3)、當平移距離BE大于等于4時,直角梯形ABCD被直線掃過的面積恒為12.
(4)、當時,如下圖所示,
直角梯形ABCD被直線掃過的面積S=S直角梯形ABCD-SRt△DOF.
(5)、①當時,有,解得.
②當時,有
,
即,解得,(舍去).
答:當或時,直線l將直角梯形ABCD分成的兩部分面積之比為1: 3.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD,∠ABD與∠C互補.
(1)求證:AD平分∠BAC;(2)若AB=5,AC=9,則AE=_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某家電生產(chǎn)企業(yè)根據(jù)市場調(diào)查分析,決定調(diào)整產(chǎn)品生產(chǎn)方案,準備每周(按120個工時計算)生產(chǎn)空調(diào)、冰箱、彩電共360臺,且彩電至少生產(chǎn)60臺,已知生產(chǎn)這些家電產(chǎn)品每臺所需工時和每臺產(chǎn)值如下表:
問每周應(yīng)生產(chǎn)空調(diào)、冰箱、彩電各多少臺,才能使產(chǎn)值最高?最高產(chǎn)值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,O為坐標原點,已知A(1,1),在x軸上確定點P,使△AOP為等腰三角形,則符合條件的點P的個數(shù)為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一個多項式與3x2+9x的和等于5x2+4x﹣1,則這個多項式是( )
A. 2x2﹣5x﹣1 B. ﹣2x2+5x+1 C. 8x2﹣5x+1 D. 8x2+13x﹣1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某教研機構(gòu)為了解在校初中生閱讀數(shù)學教科書的現(xiàn)狀,隨機抽取某校部分初中學生進行了調(diào)查.依據(jù)相關(guān)數(shù)據(jù)繪制成以下不完整的統(tǒng)計圖表,請根據(jù)圖表中的信息解答下列問題:
(1)求樣本容量及表格中a,b,c的值,并補全統(tǒng)計圖;
(2)若該校共有初中生2 300名,請估計該校“不重視閱讀數(shù)學教科書”的初中生人數(shù);
(3)①根據(jù)上面的統(tǒng)計結(jié)果,談?wù)勀銓υ撔3踔猩喿x數(shù)學教科書的現(xiàn)狀的看法及建議;
②如果要了解全省初中生閱讀數(shù)學教科書的情況,你認為應(yīng)該如何進行抽樣?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com