如果對任意實數(shù)x,等式:(1-2x)3=a0+a1x+a2x2+a3x3都成立,那么a1+a2+a3=________.

-2
分析:先令x=0求出a0的值,再令x=1,然后進(jìn)行計算即可得解.
解答:x=0時,a0=1,
x=1時,(1-2×1)3=a0+a1+a2+a3=-1,
所以,a1+a2+a3=-1-1=-2.
故答案為:-2.
點評:本題考查了代數(shù)式求值,分別給x特殊值求出系數(shù)的關(guān)系是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖1,在平面內(nèi)取一點O,過點O作兩條夾角為60°的數(shù)軸,使它們以點O為公共原點且具有相同的單位長度,這樣在平面內(nèi)建立的坐標(biāo)系稱為斜坐標(biāo)系,我們把水平放置的數(shù)軸稱為橫軸(記作a軸),將斜向放置的數(shù)軸稱為斜軸(記作b軸).類似
于直角坐標(biāo)系,對于斜坐標(biāo)平面內(nèi)的任意一點P,過點P分別作b軸、a軸的平行線交a軸、b軸于點M、N,若點M、N分別在a軸、b軸上所對應(yīng)的實數(shù)為m與n,則稱有序?qū)崝?shù)對(m,n)為點P的坐標(biāo).可知建立了斜坐標(biāo)系的平面內(nèi)任意一個點P與有序?qū)崝?shù)對(m,n)之間是相互唯一確定的.
精英家教網(wǎng)
(1)請寫出圖2(其中虛線均平行于a軸或b軸)中點P的坐標(biāo),并在圖中標(biāo)出點Q(2,-3);
(2)如圖3(其中虛線均平行于a軸或b軸),在斜坐標(biāo)系中點A(1,4)、B(1,-1)、C(6,-1).
精英家教網(wǎng)
①判斷△ABC的形狀,并簡述理由;
②如果點D在邊BC上,且其坐標(biāo)為(2.5,-1),試問:在邊BC上是否存在點E使△ACE與△ABD相全等?如有,請寫出點E的坐標(biāo),并說明它們?nèi)鹊睦碛;如沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,在平面內(nèi)取一點O,過點O作兩條夾角為60°的數(shù)軸,使它們以點O為公共原點且具有相同的單位長度,這樣在平面內(nèi)建立的坐標(biāo)系稱為斜坐標(biāo)系,我們把水平放置的數(shù)軸稱為橫軸(記作a軸),將斜向放置的數(shù)軸稱為斜軸(記作b軸).類似
于直角坐標(biāo)系,對于斜坐標(biāo)平面內(nèi)的任意一點P,過點P分別作b軸、a軸的平行線交a軸、b軸于點M、N,若點M、N分別在a軸、b軸上所對應(yīng)的實數(shù)為m與n,則稱有序?qū)崝?shù)對(m,n)為點P的坐標(biāo).可知建立了斜坐標(biāo)系的平面內(nèi)任意一個點P與有序?qū)崝?shù)對(m,n)之間是相互唯一確定的.

(1)請寫出圖2(其中虛線均平行于a軸或b軸)中點P的坐標(biāo),并在圖中標(biāo)出點Q(2,-3);
(2)如圖3(其中虛線均平行于a軸或b軸),在斜坐標(biāo)系中點A(1,4)、B(1,-1)、C(6,-1).

①判斷△ABC的形狀,并簡述理由;
②如果點D在邊BC上,且其坐標(biāo)為(2.5,-1),試問:在邊BC上是否存在點E使△ACE與△ABD相全等?如有,請寫出點E的坐標(biāo),并說明它們?nèi)鹊睦碛桑蝗鐩]有,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案