【題目】在四邊形ABCD中,∠B=∠C90°,若AB4,BC4,CD1,問(wèn):在BC上是否存在點(diǎn)P,使得APPD?若存在,求出BP的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

【答案】存在,理由見(jiàn)解析,BP2

【解析】

利用ABP∽△PCD得出∠BPA+DPC90°,即∠APD90°,求出BP的長(zhǎng)即可.

解:存在.

如圖所示,

APPD,

∴∠APD90°

∴∠APB+DPC90°,

又∵DCBC,

∴∠DCP90°

∴∠PDC+DPC90°,

∴∠APB=∠PDC,

∵∠B=∠C

∴△ABP∽△PCD,

設(shè)BPx,則CP4x,

x4x)=4,

x24x+40

即(x220,

解得x2,即BP2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)Px0m),Q1,n)在二次函數(shù)y=(x+a)(xa1)(a≠0)的圖象上,且mn下列結(jié)論:①該二次函數(shù)與x軸交于點(diǎn)(﹣a,0)和(a+1,0);②該二次函數(shù)的對(duì)稱軸是x ③該二次函數(shù)的最小值是(a+22; 0x01.其中正確的是_____.(填寫(xiě)序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD=6,ABBCADCD,BAD=60°,點(diǎn)M、N分別在AB、AD邊上若AM:MB=AN:ND=1:2BCD= °,cosMCN=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題探究:三角形的角平分線是初中幾何中一條非常重要的線段,它除了具有平分角、角平分線上的點(diǎn)到角兩邊的距離相等這些性質(zhì)外,還具有以下的性質(zhì):

如圖①,在△ABC中,AD平分∠BACBC于點(diǎn)D,則.提示:過(guò)點(diǎn)CCEADBA的延長(zhǎng)線于點(diǎn)E

請(qǐng)根據(jù)上面的提示,寫(xiě)出得到這一結(jié)論完整的證明過(guò)程.

結(jié)論應(yīng)用:如圖②,在RtABC中,∠C90°,AC8,BC15,AD平分∠BACBC于點(diǎn)D.請(qǐng)直接利用問(wèn)題探究的結(jié)論,求線段CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸相交于,兩點(diǎn),頂點(diǎn)在第一象限,點(diǎn)在該拋物線上.

1)若點(diǎn)坐標(biāo)為.

①求的函數(shù)關(guān)系式;

②已知兩點(diǎn),,當(dāng)拋物線與線段沒(méi)有交點(diǎn)時(shí),求的取值范圍;

2)若點(diǎn)在該拋物線的曲線段上(不與點(diǎn),重合),直線軸于點(diǎn),過(guò)點(diǎn)作軸于點(diǎn),連接,.求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為(4,0)和(03),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)長(zhǎng)度單位的速度沿AOO運(yùn)動(dòng),在點(diǎn)P出發(fā)的同時(shí),動(dòng)直線EFx軸出發(fā),以每秒1個(gè)長(zhǎng)度單位沿y軸方向向上平移,分別與y軸、線段AB交于EP、FP.設(shè)運(yùn)動(dòng)時(shí)間為ts0t≤2).

1)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使得EOPAOB相似?若存在,請(qǐng)求出所有符合題意的t的值;若不存在,請(qǐng)說(shuō)明理由.

2)若PEF是等腰三角形,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,在矩形ABCD中,AB8,BCx0x≤8),點(diǎn)E在邊CD上,且CECB,以AE為對(duì)角線作正方形AGEF.設(shè)正方形AGEF的面積y

1)當(dāng)點(diǎn)F在矩形ABCD的邊上時(shí),x   

2)求yx的函數(shù)關(guān)系式及y的取值范圍.

3)當(dāng)矩形ABCD的一條邊將正方形AGEF的面積分為13兩部分時(shí),直接寫(xiě)出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線Lyax2+bx+ca≠0)與x軸交于A、B兩點(diǎn).與y軸交于C點(diǎn).且A(﹣1,0),OBOC3OA

1)求拋物線L的函數(shù)表達(dá)式;

2)在拋物線L的對(duì)稱軸上是否存在一點(diǎn)M,使ACM周長(zhǎng)最小?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

3)連接AC、BC,在拋物線L上是否存在一點(diǎn)N,使SABC2SOCN?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將兩塊斜邊長(zhǎng)相等的等腰直角三角板按如圖①擺放斜邊AB分別交CD,CE于M,N點(diǎn).

(1)如果把圖①中的△BCN繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到△ACF,連接FM,如圖②,求證:△CMF≌△CMN;

(2)將△CED繞點(diǎn)C旋轉(zhuǎn),則:

當(dāng)點(diǎn)M,N在AB上(不與點(diǎn)A,B重合)時(shí),線段AM,MN,NB之間有一個(gè)不變的關(guān)系式請(qǐng)你寫(xiě)出這個(gè)關(guān)系式,并說(shuō)明理由;

當(dāng)點(diǎn)M在AB上,點(diǎn)N在AB的延長(zhǎng)線上(如圖③)時(shí),①中的關(guān)系式是否仍然成立?

查看答案和解析>>

同步練習(xí)冊(cè)答案