已知點(diǎn)A,B分別是兩條平行線m,n上任意兩點(diǎn),C是直線n上一點(diǎn),且∠ABC=90°,點(diǎn)E在AC的延長(zhǎng)線上,BC=kAB(k≠0).
(1)當(dāng)k=1時(shí),在圖(1)中,作∠BEF=∠ABC,EF交直線m于點(diǎn)F.寫(xiě)出線段EF與EB的數(shù)量關(guān)系,并加以證明;

(2)若k≠1,如圖(2),∠BEF=∠ABC,其它條件不變,探究線段EF與EB的數(shù)量關(guān)系,并說(shuō)明理由.
(1) EF=EB;(2)EB=KEF

試題分析:(1)在直線m上截取AM=AB,連接ME,易證△MAE≌△BAE,則EM=EB,再根據(jù)等角對(duì)等邊即可證明EM=EF,從而得到結(jié)果
(2)過(guò)點(diǎn)E作EM⊥m,可以證明四邊形MENA為矩形,進(jìn)而即可證明△MEF∽△NEB,根據(jù)相似三角形的對(duì)應(yīng)邊的比相等即可得到結(jié)果.
(1)在直線m上截取AM=AB,連接ME

BC=kAB,k=1,
∴BC=AB,
∠ABC=90°,
∴∠CAB=∠ACB=45°,
∵m∥n,
∴∠MAE=∠ACB=∠CAB=45°,
∠FAB=90°,
∵AE=AE,
∴△MAE≌△BAE,
∴EM=EB,∠AME=∠ABE,
∵∠BEF=∠ABC=90°,
∴∠FAB+∠BEF=180°,
∴∠ABE+∠EFA=180°,
又∵∠AME+∠EMF=180°,
∴∠EMF=∠EFA,
∴EM=EF,
∴EF=EB;
(2)過(guò)點(diǎn)E作EM⊥m,EN⊥AB,垂足為M,N,

∴∠EMF=∠ENA=90°,
∵m∥n,∠ABC=90°,
∴∠MAB=90°,
∴四邊形MENA為矩形,
∴ME=NA,∠MEN=90°,
∵∠BEF=∠ABC=90°,
∴∠MEF=∠NEB,
∴△MEF∽△NEB,
,

在Rt△ANE和Rt△ABC中,
∴EB=KEF.
點(diǎn)評(píng):本題知識(shí)點(diǎn)多,綜合性強(qiáng),難度較大,正確作出輔助線是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,點(diǎn)C將線段AB分成兩部分,如果,那么稱(chēng)點(diǎn)C為線段AB的黃金分割點(diǎn).某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類(lèi)似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果,那么稱(chēng)直線l為該圖形的黃金分割線.

(1)研究小組猜想:在△ABC中,若點(diǎn)D為AB邊上的黃金分割點(diǎn)(如圖2),則直線CD是△ABC的黃金分割線.你認(rèn)為對(duì)嗎?為什么?
(2)研究小組在進(jìn)一步探究中發(fā)現(xiàn):過(guò)點(diǎn)C任作一條直線交AB于點(diǎn)E,再過(guò)點(diǎn)D作直線DF∥CE,交AC于點(diǎn)F,連接EF(如圖3),則直線EF也是△ABC的黃金分割線.請(qǐng)你說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,請(qǐng)你補(bǔ)充一個(gè)你認(rèn)為正確的條件,使                          .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖(1),一正方形紙板ABCD的邊長(zhǎng)為4,對(duì)角線AC、BD交于點(diǎn)O,一塊等腰直角三角形的三角板的一個(gè)頂點(diǎn)處于點(diǎn)O處,兩邊分別與線段AB、AD交于點(diǎn)E、F,設(shè)BE=
(1)若三角板的直角頂點(diǎn)處于點(diǎn)O處,如圖(2).判斷三角形EOF的形狀,并說(shuō)明理由。

(2)在(1)的條件下,若三角形EOF的面積為S,求S關(guān)于x的函數(shù)關(guān)系式。
(3)若三角板的銳角頂點(diǎn)處于點(diǎn)O處,如圖(3).

①若DF=,求關(guān)于的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;
②探究直線EF與正方形ABCD的內(nèi)切圓的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(4分)如圖,在△ABD和△AEC中,EAD上一點(diǎn),若∠DAC =∠B,∠AEC =∠BDA. 求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,△ABC與△DEF是位似圖形,位似比為2︰3,若AB=6,那么DE=      .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知每個(gè)小方格都是邊長(zhǎng)為1的正方形,我們稱(chēng)每個(gè)小正方形的頂點(diǎn)為格點(diǎn),以格點(diǎn)為頂點(diǎn)的圖形稱(chēng)為格點(diǎn)圖形. 圖中的△ABC是一個(gè)格點(diǎn)三角形.

(1)請(qǐng)你在圖中畫(huà)出格點(diǎn)△A1BC1, 使得△A1BC1∽△ABC,且△A1BC1與△ABC的相似比為2:1;
(2)寫(xiě)出A1、C1兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖, ΔABC是等邊三角形,點(diǎn)D,E分別在BC,AC上,且BD=CE,AD與BE相交于點(diǎn)F。

(1)求證:ΔABD≌ΔBCE.
(2)ΔAEF與ΔABE相似嗎?請(qǐng)說(shuō)明理由.
(3)成立嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,△ABC的頂點(diǎn)在格點(diǎn)上,且點(diǎn)A(-5,-1),點(diǎn)C(-1,-2).

(1)以原點(diǎn)O為旋轉(zhuǎn)中心,將△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到△. 請(qǐng)?jiān)趫D中畫(huà)出△,并寫(xiě)出點(diǎn)A的對(duì)稱(chēng)點(diǎn)的坐標(biāo);
(2)以原點(diǎn)O為位似中心,位似比為2,在第一象限內(nèi)將△ABC放大,畫(huà)出放大后的圖形△.

查看答案和解析>>

同步練習(xí)冊(cè)答案