【題目】在矩形的各邊、、和上分別選取點、、、,使得,如果,,四邊形的最大面積是( ).
A.1350B.1300
C.1250D.1200
【答案】C
【解析】
設(shè)AE=x,四邊形EFGH的面積是S,則AH=CF=CG=x.分別求出矩形四個角落的三角形的面積,再利用矩形的面積減去四個角落的三角形的面積,可得四邊形EFGH的面積S;先配方,確定函數(shù)的對稱軸,再與函數(shù)的定義域結(jié)合即可求出四邊形EFGH的面積最大值.
設(shè)AE=x,四邊形EFGH的面積是S,則AH=CF=CG=x.
由題意,BE=DG=60﹣x,BF=DH=40﹣x,則
S△AHE=S△CGFx2,S△DGH=S△BEF(60﹣x)(40﹣x),
所以四邊形EFGH的面積為:
S=60×40﹣x2﹣(60﹣x)(40﹣x)=﹣2x2+100x=﹣2(x﹣25)2+1250(0<x≤40);
當(dāng)x=25時,S最大值=1250.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教科書中這樣寫道:“我們把多項式及叫做完全平方式”,如果一個多項式不是完全平方式,我們常做如下變形:先添加一個適當(dāng)?shù)捻検故阶又谐霈F(xiàn)完全平方式,再減去這個項,使整個式子的值不變這種方法叫做配方法.配方法是一種重要的解決問題的數(shù)學(xué)方法,不僅可以將一個看似不能分解的多項式分解因式,還能解決一些與非負(fù)數(shù)有關(guān)的問題或求化數(shù)式最大值.最小值等.
例如:分解因式
;例如求代數(shù)式的最小值..可知當(dāng)時,有最小值,最小值是,根據(jù)閱讀材料用配方法解決下列問題:
(1)分解因式: _____
(2)當(dāng)為何值時,多項式有最小值,并求出這個最小值.
(3)當(dāng)為何值時.多項式有最小值并求出這個最小值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC=6,E,F分別是AB,AC的中點,動點P在射線EF上,BP交CE于點D,∠CBP的平分線交CE于點Q,當(dāng)CQ=QE時,EP+BP的值為( ).
A.6B.9C.12D.18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在小水池旁有一盞路燈,已知支架AB的長是0.8m,A端到地面的距離AC是4m,支架AB與燈柱AC的夾角為65°.小明在水池的外沿D測得支架B端的仰角是45°,在水池的內(nèi)沿E測得支架A端的仰角是50°(點C、E、D在同一直線上),求小水池的寬DE.(結(jié)果精確到0.1m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明利用剛學(xué)過的測量知識來測量學(xué)校內(nèi)一棵古樹的高度。一天下午,他和學(xué)習(xí)小組的同學(xué)帶著測量工具來到這棵古樹前,由于有圍欄保護,他們無法到達(dá)古樹的底部B,如圖所示。于是他們先在古樹周圍的空地上選擇一點D,并在點D處安裝了測量器DC,測得古樹的頂端A的仰角為45°;再在BD的延長線上確定一點G,使DG=5米,并在G處的地面上水平放置了一個小平面鏡,小明沿著BG方向移動,當(dāng)移動帶點F時,他剛好在小平面鏡內(nèi)看到這棵古樹的頂端A的像,此時,測得FG=2米,小明眼睛與地面的距離EF=1.6米,測傾器的高度CD=0.5米。已知點F、G、D、B在同一水平直線上,且EF、CD、AB均垂直于FB,求這棵古樹的高度AB。(小平面鏡的大小忽略不計)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2﹣4和y=﹣ax2+4都經(jīng)過x軸上的A、B兩點,兩條拋物線的頂點分別為C、D.當(dāng)四邊形ACBD的面積為40時,a的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,動點以的速度,從點運動到點,動點同時以的速度,從點運動到點,當(dāng)為直角三角形時,點運動的時間為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖正方形ABCD的邊長為2,點E,F,G,H分別在AD,AB,BC,CD上,且EA=FB=GC=HD,分別將△AEF,△BFG,△CGH,△DHE沿EF,FG,GH,HE翻折,得四邊形MNKP,設(shè)AE=x(0<x<1),S四邊形MNKP=y,則y關(guān)于x的函數(shù)圖象大致為( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com