【題目】2019331日,重慶舉行了國際馬拉松比賽,眾多志愿者參與了服務(wù)工作,志愿者小茜和小悠分別從“南濱公園”和“朝天門橋”出發(fā),沿同一條筆直的公路相向而行.小茜先出發(fā)5分鐘后,小悠立刻騎自行車趕往“南濱公園”.小茜開始騎滑板車,中途改為跑步,且跑步的速度為滑板車速度的一半,到達(dá)“朝天門橋”時恰好用了45分鐘.若兩人之間的距離與小茜離開出發(fā)地的時間之間的關(guān)系如圖所示.則當(dāng)小悠到達(dá)“南濱公園”時,小茜離“朝天門橋”的距離為__________米.

【答案】1600

【解析】

根據(jù)題意和函數(shù)圖象可以求得小茜的跑步速度和滑行速度,從而可以求得小茜由跑步變?yōu)椴叫械臅r刻,進(jìn)而求得小悠的騎車速度,再根據(jù)題意即可得到則當(dāng)小悠到達(dá)時,小茜離“朝天門橋”的距離.

設(shè)小茜分鐘改用跑步

由圖象可知茜滑板/

茜跑/

設(shè)小悠的騎車速度為x/

20015-5+15-5x=5000-500

解得x=250

/

小茜走15分鐘時兩人相距500米,此時小悠出發(fā)10分鐘,走了250米.

小悠到公園用時分,此時小茜走了29分鐘

(米)

故答案為:1600

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是ABCD的對角線,∠BAC=∠DAC.

1求證:AB=BC;

2若AB=2,AC=2,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠B+BCD=180°,∠B=D.求證:∠E=DFE

證明:∵∠B+BCD=180°(已知)

ABCD

∴∠B=DCE

又∵∠B=D(已知 ),

___________ (等量代換)

∴∠E=DFE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ ABC中,∠ ABC∠ ACB的平分線交于點O。

(1)∠ABC=40°,∠ ACB=50°,則∠BOC=_______

(2)∠ABC+∠ ACB=lO0°,則∠BOC="________"

(3)∠A=70°,則∠BOC=_________

(4)∠BOC=140°,則∠A=________

(5)你能發(fā)現(xiàn)∠ BOC∠ A之間有什么數(shù)量關(guān)系嗎?寫出并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,BE、CE分別平分∠ABC、∠BCD,EAD上,BE =12,CE =5,則平行四邊形ABCD的周長是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

材料一:分解因式是將一個多項式化為若干個整式積的形式的變形,“十字相乘法”可把某些二次三項式分解為兩個一次式的乘積,具體做法如下:對關(guān)于的二次三項式,如圖1,將項系數(shù),作為第一列,項系數(shù),作為第二列,若恰好等于項的系數(shù),那么可直接分解因式為:

示例1:分解因式:

解:如圖2,其中,,而;

;

示例2:分解因式:

解:如圖3,其中,,而;

;

材料二:關(guān)于的二次多項式也可以用“十字相乘法”分解為兩個一次式的乘積.如圖4,將作為一列,作為第二列,作為第三列,若,,,即第1、2列,第1、3列和第23列都滿足十字相乘規(guī)則,則原式分解因式的結(jié)果為:;

示例3:分解因式:

解:如圖5,其中,,;

滿足,

請根據(jù)上述材料,完成下列問題:

1)分解因式: ; ;

2)若,均為整數(shù),且關(guān)于,的二次多項式可用“十字相乘法”分解為兩個一次式的乘積,求出的值,并求出關(guān)于,的方程的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把三角形ABC向上平移4個單位長度,再向右平移3個單位長度,得到△ABC′.

1)畫出△ABC′;并直接寫出點A′、B′、C′的坐標(biāo);

2)若點Pmn)是△ABC某邊上的點,經(jīng)上述平移后,點P的對應(yīng)點為P′,寫出點P′的坐標(biāo)(用含m,n的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教科書中這樣寫道:“我們把多項式叫做完全平方式,如果一個多項式不是完全平方式,我們常做如下變形:先添加一個適當(dāng)?shù)捻,使式子中出現(xiàn)完全平方式,再減去這個項,使整個式子的值不變,這種方法叫做配方法.配方法是一種重要的解決問題的數(shù)學(xué)方法,不僅可以將一個看似不能分解的多項式分解因式,還能解決一些與非負(fù)數(shù)有關(guān)的問題或求代數(shù)式最大值,最小值等問題.

例如:分解因式;求代數(shù)式的最小值,.可知當(dāng)時,有最小值,最小值是,根據(jù)閱讀材料用配方法解決下列問題:

1)分解因式:_______

2)當(dāng)為何值時,多項式有最大值?并求出這個最大值.

3)利用配方法,嘗試解方程,并求出,的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=BC=10,以AB為直徑作⊙O分別交AC,BC于點D,E,連接DE和DB,過點E作EF⊥AB,垂足為F,交BD于點P.

(1)求證:AD=DE;
(2)若CE=2,求線段CD的長;
(3)在(2)的條件下,求△DPE的面積.

查看答案和解析>>

同步練習(xí)冊答案