【題目】如圖,正方形ABCD的邊長(zhǎng)為10,AG=CH=8,BG=DH=6,連接GH,則線段GH的長(zhǎng)為( )

A. B. C. D.

【答案】D

【解析】試題解析:如圖,延長(zhǎng)BGCH于點(diǎn)E,

ABGCDH中,

,

∴△ABG≌△CDH(SSS),

AG2+BG2=AB2,

∴∠1=5,2=6,AGB=CHD=90°,

∴∠1+2=90°5+6=90°,

又∵∠2+3=90°,4+5=90°,

∴∠1=3=5,2=4=6,

ABGBCE中,

∴△ABG≌△BCE(ASA),

BE=AG=8,CE=BG=6,BEC=AGB=90°,

GE=BE-BG=8-6=2,

同理可得HE=2,

RTGHE中,GH=

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P(m+2,3m)在x軸上,則m的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一座橋如圖,橋下水面寬度AB是20米,高CD是4米.要使高為3米的船通過(guò),則其寬度須不超過(guò)多少米.

(1)如圖1,若把橋看做是拋物線的一部分,建立如圖坐標(biāo)系.

①求拋物線的解析式;

②要使高為3米的船通過(guò),則其寬度須不超過(guò)多少米?

(2)如圖2,若把橋看做是圓的一部分.

①求圓的半徑;

②要使高為3米的船通過(guò),則其寬度須不超過(guò)多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店連續(xù)兩次降價(jià)10%后商品的價(jià)格是81元,則該商品原來(lái)的價(jià)格是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某文具店購(gòu)進(jìn)一批紀(jì)念冊(cè),每本進(jìn)價(jià)為20元,出于營(yíng)銷考慮,要求每本紀(jì)念冊(cè)的售價(jià)不低于20元且不高于28元,在銷售過(guò)程中發(fā)現(xiàn)該紀(jì)念冊(cè)每周的銷售量y(本)與每本紀(jì)念冊(cè)的售價(jià)x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價(jià)為22元時(shí),銷售量為36本;當(dāng)銷售單價(jià)為24元時(shí),銷售量為32本.

(1)求出y與x的函數(shù)關(guān)系式;

(2)當(dāng)文具店每周銷售這種紀(jì)念冊(cè)獲得150元的利潤(rùn)時(shí),每本紀(jì)念冊(cè)的銷售單價(jià)是多少元?

(3)設(shè)該文具店每周銷售這種紀(jì)念冊(cè)所獲得的利潤(rùn)為w元,將該紀(jì)念冊(cè)銷售單價(jià)定為多少元時(shí),才能使文具店銷售該紀(jì)念冊(cè)所獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一射擊運(yùn)動(dòng)員在一次射擊練習(xí)中打出的成績(jī)是(單位:環(huán)):7,8,9,8,6,8,10,7,這組數(shù)據(jù)的眾數(shù)是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:

我們經(jīng)常通過(guò)認(rèn)識(shí)一個(gè)事物的局部或其特殊類型,來(lái)逐步認(rèn)識(shí)這個(gè)事物;比如我們通過(guò)學(xué)習(xí)特殊的四邊形,即平行四邊形(繼續(xù)學(xué)習(xí)它們的特殊類型如矩形、菱形等)來(lái)逐步認(rèn)識(shí)四邊形;

我們對(duì)課本里特殊四邊形的學(xué)習(xí),一般先學(xué)習(xí)圖形的定義,再探索發(fā)現(xiàn)其性質(zhì)和判定方法,然后通過(guò)解決簡(jiǎn)單的問(wèn)題鞏固所學(xué)知識(shí);

請(qǐng)解決以下問(wèn)題:

如圖,我們把滿足AB=ADCB=CDABBC的四邊形ABCD叫做“箏形”;

⑴寫出箏形的兩個(gè)性質(zhì)(定義除外);

⑵寫出箏形的兩個(gè)判定方法(定義除外),并選出一個(gè)進(jìn)行證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)問(wèn)題發(fā)現(xiàn)

如圖1,ACB和DCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE,求AEB的度數(shù).

(2)拓展探究

如圖2,ACB和DCE均為等腰直角三角形,ACB=DCE=90°,點(diǎn)A、D、E在同一直線上,CM為DCE中DE邊上的高,連接BE.請(qǐng)求AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度.

(1)畫出△ABC向上平移6個(gè)單位得到的△A1B1C1;

(2)以點(diǎn)C為位似中心,在網(wǎng)格中畫出△A2B2C2,使△A2B2C2與△ABC位似,且△A2B2C2與△ABC的位似比為2:1,并直接寫出點(diǎn)A2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案