【題目】如圖,轉(zhuǎn)盤中各個(gè)扇形的面積相等,分別標(biāo)有數(shù)字1,2,3,4,小蘭轉(zhuǎn)動(dòng)轉(zhuǎn)盤,記下指針?biāo)谏刃蝺?nèi)的數(shù)字為,再由小田轉(zhuǎn)動(dòng)轉(zhuǎn)盤,記下指針?biāo)谏刃蝺?nèi)的數(shù)字為,將和分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),得到點(diǎn)
(1) 用列表法或畫樹狀圖法表示出的所有等可能出現(xiàn)的結(jié)果;
(2) 求點(diǎn)落在一次函數(shù)的圖象上的概率;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品每件成本為20元,經(jīng)過市場(chǎng)調(diào)研發(fā)現(xiàn),這種產(chǎn)品在未來20天內(nèi)的日銷售量(單位:件)是關(guān)于時(shí)間(單位:天)的一次函數(shù),調(diào)研所獲的部分?jǐn)?shù)據(jù)如下表:
時(shí)間/天 | 1 | 3 | 10 | 20 |
日銷售量/件 | 98 | 94 | 80 | 60 |
這20天中,該產(chǎn)品每天的價(jià)格(單位:元/件)與時(shí)間的函數(shù)關(guān)系式為:(為整數(shù)),根據(jù)以上提供的條件解決下列問題:
(1)直接寫出關(guān)于的函數(shù)關(guān)系式;
(2)這20天中哪一天的日銷售利潤(rùn)最大,最大的銷售利潤(rùn)是多少?
(3)在實(shí)際銷售的20天中,每銷售一件商品就捐贈(zèng)元()給希望工程,通過銷售記錄發(fā)現(xiàn),這20天中,每天扣除捐贈(zèng)后的日銷利潤(rùn)隨時(shí)間的增大而增大,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠家生產(chǎn)并銷售某種產(chǎn)品,假設(shè)銷售量與產(chǎn)量相等,如圖中的折線ABD,線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本y1(單位:元),銷售價(jià)y2(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系.
(1)請(qǐng)解釋圖中點(diǎn)D的實(shí)際意義.
(2)求線段CD所表示的y2與x之間的函數(shù)表達(dá)式.
(3)當(dāng)該產(chǎn)品產(chǎn)量為多少時(shí),獲得的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊邊長(zhǎng)為2,四邊形是平行四邊形,,和在同一條直線上,且點(diǎn)與點(diǎn)重合,現(xiàn)將沿的方向以每秒1個(gè)單位的速度勻速運(yùn)動(dòng),當(dāng)點(diǎn)與點(diǎn)重合時(shí)停止,則在這個(gè)運(yùn)動(dòng)過程中,與四邊形的重合部分的面積與運(yùn)動(dòng)時(shí)間之間的函數(shù)關(guān)系圖象大致是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在 中,,點(diǎn) 為的中點(diǎn).
(1)如圖1,E為線段DC上任意一點(diǎn),將線段繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到線段,連接 ,過點(diǎn)F作,交直線 于點(diǎn) .判斷 與的數(shù)量關(guān)系并加以證明;
(2)如圖2,若為線段的延長(zhǎng)線上任意一點(diǎn),(1)中的其他條件不變,你在(1)中得出的結(jié)論是否發(fā)生改變,直接寫出你的結(jié)論,不必證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在等腰三角形中,底邊與腰的比叫做頂角的正對(duì),頂角A的正對(duì)記作sadA,即sadA=底邊:腰.如圖,在△ABC中,AB=AC,∠A=4∠B.則cosBsadA=( 。
A.1B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點(diǎn)O在AC上,以OA為半徑的⊙O交AB于點(diǎn)D,BD的垂直平分線交BC于點(diǎn)E,交BD于點(diǎn)F,連接DE.
(1)判斷直線DE與⊙O的位置關(guān)系,并說明理由.
(2)若AC=3,BC=4,OA=1,求線段DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按要求解方程:
(1)用配方法解6x2+x﹣2=0;
(2)在解方程x2﹣2x=2﹣x時(shí),某同學(xué)的解答如下,請(qǐng)你指出解答中出現(xiàn)的錯(cuò)誤,并給出正確解題過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角△ABC中,∠BAC=90°,AB=3,M是邊BC上的點(diǎn),連接AM.如果將△ABM沿直線AM翻折后,點(diǎn)B恰好在邊AC的中點(diǎn)處,那么點(diǎn)M到AC的距離是( 。
A. 1.5 B. 2 C. 2.5 D. 3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com