【題目】如圖,點(diǎn)C是直線(xiàn)AB,DE之間的一點(diǎn),∠ACD=90°,下列條件能使得ABDE的是(。

A. α+∠β=180° B. β﹣∠α=90° C. β=3∠α D. α+∠β=90°

【答案】B

【解析】延長(zhǎng)ACDE于點(diǎn)F,根據(jù)所給條件如果能推出α=∠1,則能使得ABDE,否則不能使得ABDE;

延長(zhǎng)ACDE于點(diǎn)F.

A. ∵α+∠β=180°,∠β=∠1+90°,

∴∠α=90°-∠1,即∠α≠∠1,

∴不能使得ABDE;

B.β﹣∠α=90°,∠β=∠1+90°,

∴∠α=∠1,

∴能使得ABDE;

C.∵∠β=3∠α,∠β=∠1+90°,

∴3∠α=90°+∠1,即∠α≠∠1,

∴不能使得ABDE;

D.∵α+∠β=90°,∠β=∠1+90°,

∴∠α=-∠1,即∠α≠∠1,

∴不能使得ABDE;

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在學(xué)習(xí)了《展開(kāi)與折疊》這一課后,明白了很多幾何體都能展開(kāi)成平面圖形.于是他在家用剪刀展開(kāi)了一個(gè)長(zhǎng)方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學(xué)的知識(shí),回答下列問(wèn)題:

(1)小明總共剪開(kāi)了_______條棱.

(2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經(jīng)過(guò)折疊以后,仍然可以還原成一個(gè)長(zhǎng)方體紙盒,你認(rèn)為他應(yīng)該將剪斷的紙條粘貼到①中的什么位置?請(qǐng)你幫助小明在①上補(bǔ)全.

(3)小明說(shuō):他所剪的所有棱中,最長(zhǎng)的一條棱是最短的一條棱的5倍.現(xiàn)在已知這個(gè)長(zhǎng)方體紙盒的底面是一個(gè)正方形,并且這個(gè)長(zhǎng)方體紙盒所有棱長(zhǎng)的和是880cm,求這個(gè)長(zhǎng)方體紙盒的體積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CDAB,DCB=70°,CBF=20°,EFB=130°,

(1)問(wèn)直線(xiàn)EFAB有怎樣的位置關(guān)系?加以證明;

(2)若∠CEF=70°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】常州每年舉行一次“一袋牛奶的暴走”公益活動(dòng),用步行的方式募集善款,其中挑戰(zhàn)型路線(xiàn)”的起點(diǎn)是淹城站,并沿著規(guī)定的線(xiàn)路到達(dá)終點(diǎn)吾悅國(guó)際站.甲、乙兩組市民從起點(diǎn)同時(shí)出發(fā),已知甲組的速度為6km/h,乙組的速度為5km/h,當(dāng)甲組到達(dá)終點(diǎn)后,立即以3km/h的速度按原線(xiàn)路返回,并在途中的P站與乙組相遇,P站與吾悅國(guó)際站之間的路程為1.5km

(1)求“挑戰(zhàn)型路線(xiàn)”的總長(zhǎng);

(2)當(dāng)甲組到達(dá)終點(diǎn)時(shí),乙組離終點(diǎn)還有多少路程?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知CABA

(1)畫(huà)圖:①延長(zhǎng)BAD,使AD=BA,連接CD

②過(guò)點(diǎn)A畫(huà)AEBCAECD相交于點(diǎn)E

③過(guò)點(diǎn)B畫(huà)BFCD,交DC的延長(zhǎng)線(xiàn)于點(diǎn)F

思考:圖中有______條線(xiàn)段,它們的長(zhǎng)度表示點(diǎn)到直線(xiàn)的距離;

(2)度量:

①你度量的哪些量?______;

②通過(guò)度量你發(fā)現(xiàn):______.(寫(xiě)一條發(fā)現(xiàn)即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,PAB上一點(diǎn),則下列四個(gè)條件中, ①∠ACP=∠B②∠APC=∠ACBABCP=APCB ,
其中能滿(mǎn)足△APC和△ACB相似的條件有(  )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有三個(gè)點(diǎn)A(2,3),B(1,1),C(4,2)

(1)連接AB、C三點(diǎn),請(qǐng)?jiān)谌鐖D中作出△ABC關(guān)于x軸對(duì)稱(chēng)的圖形△ABC’并直接寫(xiě)出各對(duì)稱(chēng)點(diǎn)的坐標(biāo);(2)求△ABC的面積;(3)若Mx,y)是△ABC內(nèi)部任意一點(diǎn),請(qǐng)直接寫(xiě)出點(diǎn)M在△ABC’內(nèi)部的對(duì)應(yīng)點(diǎn)M1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小蘭和小潭分別用擲A、B兩枚骰子的方法來(lái)確定P(x,y)的位置,她們規(guī)定:小蘭擲得的點(diǎn)數(shù)為x,小譚擲得的點(diǎn)數(shù)為y,那么,她們各擲一次所確定的點(diǎn)落在已知直線(xiàn)y=-2x+6上的概率為()
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料: 在學(xué)習(xí)《圓》這一章時(shí),老師給同學(xué)們布置了一道尺規(guī)作圖題:


小敏的作法如下:
如圖,
①鏈接op,做線(xiàn)段op的垂直平分線(xiàn)MN,交OP于點(diǎn)C
②以點(diǎn)C為圓心,CO的長(zhǎng)為半徑作圓,交⊙O于A、B兩點(diǎn)
③作直線(xiàn)PA、PB所以直線(xiàn)PA,PB就是所求的切線(xiàn)

老師認(rèn)為小敏的作法正確.
請(qǐng)回答:連接OA,OB后,可證∠OAP=∠OBP=90°,其依據(jù)是;由此可證明直線(xiàn)PA,PB都是⊙O的切線(xiàn),其依據(jù)是

查看答案和解析>>

同步練習(xí)冊(cè)答案