【題目】已知,如圖,直線MN交⊙O于A,B兩點,AC是直徑,AD平分∠CAM交⊙O于D,過D作DE⊥MN于E.
(1)求證:DE是⊙O的切線;
(2)若DE=6cm,AE=3cm,求⊙O的半徑.
【答案】解:(1)證明:連接OD,
∵OA=OD,∴∠OAD=∠ODA。
∵∠OAD=∠DAE,∴∠ODA=∠DAE。∴DO∥MN。
∵DE⊥MN,∴∠ODE=∠DEM =90°,即OD⊥DE。
∵D在⊙O上,∴DE是⊙O的切線。
(2)連接CD,
∵∠AED=90°,DE=6,AE=3,∴AD=。
∵AC是⊙O的直徑,∴∠ADC=∠AED =90°。
∵∠CAD=∠DAE,∴△ACD∽△ADE。 ∴,即。
解得:AC=15。
∴⊙O的半徑是7.5cm。
【解析】試題分析:(1)連接OD,根據(jù)平行線的判斷方法與性質(zhì)可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O的切線.
(2)由直角三角形的特殊性質(zhì),可得AD的長,又有△ACD∽△ADE.根據(jù)相似三角形的性質(zhì)列出比例式,代入數(shù)據(jù)即可求得圓的半徑.
試題解析:(1)證明:連接OD.
∵OA=OD,
∴∠OAD=∠ODA.
∵∠OAD=∠DAE,
∴∠ODA=∠DAE.
∴DO∥MN.
∵DE⊥MN,
∴∠ODE=∠DEM=90°.
即OD⊥DE.
∵D在⊙O上,OD為⊙O的半徑,
∴DE是⊙O的切線.
(2)解:∵∠AED=90°,DE=6,AE=3,
∴.
連接CD.
∵AC是⊙O的直徑,
∴∠ADC=∠AED=90°.
∵∠CAD=∠DAE,
∴△ACD∽△ADE.
∴.
∴.
則AC=15(cm).
∴⊙O的半徑是7.5cm.
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的有( )
①對頂角相等;②同位角相等;③若兩個角不相等,則這兩個角一定不是對頂角;④若兩個角不相等,則這兩個角一定不是同位角.
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D,則下列說法①AD是∠BAC的平分線;②∠ADC=60°③點D在AB的中垂線上;正確的個數(shù)是 個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校規(guī)定:學生的數(shù)學學期綜合成績是由平時、期中和期末三項成績按3:3:4的比例計算所得.若某同學本學期數(shù)學的平時、期中和期末成績分別是90分,90分和85分,則他本學期數(shù)學學期綜合成績是 分.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BD平分∠ABC交AC于點D,AE∥BD交CB的延長線于點E.若∠E=35°,則∠BAC的度數(shù)為( 。
A. 40° B. 45° C. 60° D. 70°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知線段 AB=30cm,點 P 沿線段 AB 自點 A 向點 B 以 2cm/s 的速度運動,同時點 Q 沿線段 BA 自點 B 向點 A 以 3cm/s 的速度運動,則秒鐘后,P、Q 兩點相距 10cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com