【題目】某校八年級全體同學參加了某項捐款活動,隨機抽查了部分同學捐款的情況統(tǒng)計如圖所示.

1)本次共抽查學生多少人?并將條形統(tǒng)計圖補充完整;

2)請直接寫出捐款金額的眾數(shù)和中位數(shù),并計算捐款的平均數(shù);

3)在八年級600名學生中,捐款20元及以上(含20元)的學生估計有多少人?

【答案】150人;(2)眾數(shù)為10元,中位數(shù)為12.5元,平均數(shù)為13.1元;(3132人.

【解析】

1)有題意可知,捐款15元的有14人,占捐款總人數(shù)的28%,由此可得總人數(shù),將捐款總人數(shù)減去捐款515、20、25元的人數(shù)可得捐10元的人數(shù);

2)從條形統(tǒng)計圖中可知,捐款10元的人數(shù)最多,可知眾數(shù),將50人的捐款總額除以總人數(shù)可得平均數(shù);

3)由抽取的樣本可知,用捐款20及以上的人數(shù)所占比例估計總體中的人數(shù).

解:(1(人):(人),

∴本次抽查的學生有50人,補全條形統(tǒng)計圖如圖所示.(圖略)

2)捐款金額的眾數(shù)為10元,中位數(shù)為12.5元;

∴平均數(shù)為13.1元..

3)捐款20元以上的大約有132人.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AB是直徑,⊙O的切線PCBA的延長線于點P,OFBCAC于點E,交PC于點F,連結AF

(1)判斷AF與⊙O的位置關系并說明理由;

(2)若AC=24,AF=15,求sinB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在給定的一張平行四邊形紙片上作一個菱形.甲、乙兩人的作法如下:

甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BC于M,O,N,連接AN,CM,則四邊形ANCM是菱形.

乙:分別作A,B的平分線AE,BF,分別交BC,AD于E,F(xiàn),連接EF,則四邊形ABEF是菱形.

根據(jù)兩人的作法可判斷

A.甲正確,乙錯誤 B.乙正確,甲錯誤 C.甲、乙均正確 D.甲、乙均錯誤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在求兩位數(shù)的平方時,可以用列豎式的方法進行速算,求解過程如圖1所示.

1)仿照圖1,在圖2中補全豎式;

2)仿照圖1,用列豎式的方法計算一個十位數(shù)字是的兩位數(shù)的平方,過程部分如圖3所示,則這個兩位數(shù)為 (用含的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】莊子說:“一尺之椎,日取其半,萬世不竭”.這句話(文字語言)表達了古人將事物無限分割的思想,用圖形語言表示為圖1,按此圖分割的方法,可得到一個等式(符號語言):1=

圖2也是一種無限分割:在△ABC中,∠C=90°,∠B=30°,過點C作CC1⊥AB于點C1,再過點C1作C1C2⊥BC于點C2,又過點C2作C2C3⊥AB于點C3,如此無限繼續(xù)下去,則可將利△ABC分割成△ACC1、△CC1C2、△C1C2C3、△C2C3C4、…、△Cn﹣2Cn﹣1Cn、….假設AC=2,這些三角形的面積和可以得到一個等式是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:M=3a2+4ab -5a-6N=a2-2ab-4

(1)化簡:5M-(3N + 4M),結果用含a、b的式子表示.

(2)若式子5M-(3N + 4M)的值與字母a的取值無關,求b4+M-N-的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】星光廚具店購進電飯煲和電壓鍋兩種電器進行銷售其進價與售價如表

進價(元/臺)

售價(元/臺)

電飯煲

200

250

電壓鍋

160

200

1)一季度,廚具店購進這兩種電器共30臺,用去了5600元,并且全部售完,問廚具店在該買賣中賺了多少錢?

2)為了滿足市場需求,二季度廚具店決定采購電飯煲和電壓鍋共50臺,且電飯煲的數(shù)量不大于電壓鍋的,請你通過計算判斷,如何進貨廚具店賺錢最多?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,點B關于AD的對稱點為B′,連接AB′CB′,CB′ADF點.

1)如圖1,∠ABC=90°,求證:FCB′的中點;

2)小宇通過觀察、實驗、提出猜想:如圖2,在點B繞點A旋轉的過程中,點F始終為CB′的中點.小宇把這個猜想與同學們進行交流,通過討論,形成了證明該猜想的幾種想法:

想法1:過點B′B′GCDADG點,只需證三角形全等;

想法2:連接BB′ADH點,只需證HBB′的中點;

想法3:連接BB′BF,只需證∠B′BC=90°

請你參考上面的想法,證明FCB′的中點.(一種方法即可)

3)如圖3,當∠ABC=135°時,AB′,CD的延長線相交于點E,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,點ECD的中點,點FBC上,且CF=2BF,連接AEAF,若AF=,AE=7,tanEAF=,則線段BF的長為__________

查看答案和解析>>

同步練習冊答案