【題目】如圖1,把圓形井蓋卡在角尺角的兩邊互相垂直,一邊有刻度)之間,即圓與兩條直角邊相切,現(xiàn)將角尺向右平移10cm,如圖2,OA邊與圓的兩個(gè)交點(diǎn)對(duì)應(yīng)CD的長(zhǎng)為40cm則可知井蓋的直徑是(

A. 25cm B. 30cm C. 50cm D. 60cm

【答案】C

【解析】

設(shè)井蓋的直徑為2xcm,BE=10cmBO=(x10cm,BC=20cm,CO=xcm.在RtBCO,根據(jù)勾股定理得CO2=BC2+BO2,然后代入即可解出x的值,求出井蓋的直徑

過(guò)OOBOAB交⊙O于點(diǎn)E,連接OC如下所示

設(shè)井蓋的直徑為2xcmBE=10cm,BO=(x10cmBC=20cm,CO=xcm.在RtBCO根據(jù)勾股定理得CO2=BC2+BO2,代入得x2=202+x102,解得x=25,則井蓋的直徑是50cm

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,AB=10,AC=8.線段AD由線段AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到,△EFG由△ABC沿CB方向平移得到,且直線EF過(guò)點(diǎn)D.

(1)求∠BDF的大;

(2)求CG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=12 米,BC=24 米,動(dòng)點(diǎn)P從點(diǎn)A始沿邊AB向B以2 米/秒的速度移動(dòng)(不與點(diǎn)B重合),動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始沿邊BC向C以4 米/秒的速度移動(dòng)(不與點(diǎn)C重合).如果P、Q分別從A、B同時(shí)出發(fā),設(shè)運(yùn)動(dòng)的時(shí)間為x 秒,四邊形APQC的面積為y 米2.

(1)求y與x之間的函數(shù)關(guān)系式并寫(xiě)出自變量x的取值范圍;

(2)四邊形APQC的面積能否等于172米2.若能,求出運(yùn)動(dòng)的時(shí)間;若不能,請(qǐng)說(shuō)明理由.


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,、為相交成度角的兩條公路,在上距點(diǎn)米有一所小學(xué),拖拉機(jī)沿方向以每小時(shí)千米的速度行駛,在小學(xué)周?chē)?/span>米范圍內(nèi)會(huì)受到拖拉機(jī)噪音的影響.試問(wèn)小學(xué)是否會(huì)受到拖拉機(jī)噪音的影響?若受到影響,影響時(shí)間有多長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】操作發(fā)現(xiàn):如圖,已知ABCADE均為等腰三角形,ABAC,ADAE,將這兩個(gè)三角形放置在一起,使點(diǎn)BD,E在同一直線上,連接CE

1)如圖1,若∠ABC=∠ACB=∠ADE=∠AED55°,求證:BAD≌△CAE;

2)在(1)的條件下,求∠BEC的度數(shù);

拓廣探索:(3)如圖2,若∠CAB=∠EAD120°,BD4CFBCEBE邊上的高,請(qǐng)直接寫(xiě)出EF的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將ABO繞點(diǎn)B順時(shí)針旋轉(zhuǎn)到A1BO1的位置,使點(diǎn)A的對(duì)應(yīng)點(diǎn)A1落在直線y=x上,再將A1BO1繞點(diǎn)A1順時(shí)針旋轉(zhuǎn)到A1B1O2的位置,使點(diǎn)O1的對(duì)應(yīng)點(diǎn)O2落在直線y=x上,依次進(jìn)行下去,若點(diǎn)A的坐標(biāo)是(0,1),則點(diǎn)A8的橫坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,正方形ABCD與正方形AEFG的邊ABAEABAE)在一條直線上,正方形AEFG以點(diǎn)A為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α.在旋轉(zhuǎn)過(guò)程中,兩個(gè)正方形只有點(diǎn)A重合,其它頂點(diǎn)均不重合,連接BEDG.(1)當(dāng)正方形AEFG旋轉(zhuǎn)至如圖2所示的位置時(shí),求證:BEDG;(2)如圖3,如果α45°,AB2,AE4,求點(diǎn)GBE的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠家在甲、乙兩家商場(chǎng)銷(xiāo)售同一商品所獲得的利潤(rùn)分別為(單位:元),與銷(xiāo)售數(shù)量x(單位:件)的函數(shù)關(guān)系如圖所示,試根據(jù)圖象解決下列問(wèn)題:

1)分別求出,關(guān)于x的函數(shù)關(guān)系式;

2)現(xiàn)廠家分配該商品800件給甲商場(chǎng),400件給乙商場(chǎng),當(dāng)甲、乙商場(chǎng)售完這批商品后,廠家可獲得的總利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy中,有一個(gè)等腰直角三角形AOB,∠OAB=90°,直角邊AOx軸上,且AO=1.將Rt△AOB繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到等腰直角三角形A1OB1,且A1O=2AO,再將Rt△A1OB1繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到等腰直角三角形A2OB2,且A2O=2A1O,…,依此規(guī)律,得到等腰直角三角形A2018OB2018,則點(diǎn)A2018的坐標(biāo)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案