【題目】已知,如圖,拋物線y=﹣x2+bx+c經(jīng)過直線y=﹣x+3與坐標(biāo)軸的兩個(gè)交點(diǎn)A,B,此拋物線與x軸的另一個(gè)交點(diǎn)為C,拋物線的頂點(diǎn)為D.
(1)求此拋物線的解析式;
(2)若點(diǎn)M為拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)M,使△ACM與△ABC的面積相等?若存在,求點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)在x軸上是否存在點(diǎn)N使△ADN為直角三角形?若存在,確定點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)y=﹣x2+2x+3;(2)點(diǎn)M的坐標(biāo)為(0、3)或2,3)或(1+,﹣3)或(1﹣,﹣3);(3)點(diǎn)N的坐標(biāo)為(1,0)或(﹣7,0).
【解析】試題分析:(1)先求得點(diǎn)A和點(diǎn)B的坐標(biāo),然后將點(diǎn)A和點(diǎn)B的坐標(biāo)代入拋物線的解析式求得b,c的值即可;
(2)設(shè)M的坐標(biāo)為(x,y),由△ACM與△ABC的面積相等可得到|y|=3,將y=3或y=-3代入拋物線的解析式求得對(duì)應(yīng)的x的值,從而得到點(diǎn)M的坐標(biāo);
(3)先利用配方法求得點(diǎn)D的坐標(biāo),當(dāng)∠DNA=90°時(shí),DN⊥OA,可得到點(diǎn)N的坐標(biāo),從而得到AN=2,然后再求得AD的長(zhǎng);當(dāng)∠N′DA=90°時(shí),依據(jù)sin∠DN′A=sin∠ADN可求得AN′的長(zhǎng),從而可得到N′的解析式.
試題解析:(1)將x=0代入AB的解析式得:y=3,
∴B(0,3).
將y=0代入AB的解析式得:﹣x+3=0,解得x=3,
A(3,0).
將點(diǎn)A和點(diǎn)B的坐標(biāo)代入得: ,
解得:b=2,c=3.
∴拋物線的解析式為y=﹣x2+2x+3.
(2)設(shè)M的坐標(biāo)為(x,y).
∵△ACM與△ABC的面積相等,
∴AC|y|=ACOB.
∴|y|=OB=3.
當(dāng)y=3時(shí),﹣x2+2x+3=3,解得x=0或x=2,
∴M(2,3)、(0、3).
當(dāng)y=﹣3時(shí),﹣x2+2x+3=3,解得:x=1+或x=1﹣.
∴M(1+,﹣3)或(1﹣,﹣3).
綜上所述點(diǎn)M的坐標(biāo)為(0、3)或2,3)或(1+,﹣3)或(1﹣,﹣3).
(3)y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴D(1,4).
①當(dāng)∠DNA=90°時(shí),如圖所示:
∵∠DNA=90°時(shí),
∴DN⊥OA.
又∵D(1,4)
∴N(1,0).
∴AN=2.
∵DN=4,AN=2,
∴AD=2.
②當(dāng)∠N′DA=90°時(shí),則DN′A=∠NDA.
∴,即,解得:AN′=10.
∵A(3,0),
∴N′(﹣7,0).
綜上所述點(diǎn)N的坐標(biāo)為(1,0)或(﹣7,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(分)如圖,拋物線的頂點(diǎn)為.
()求拋物線的函數(shù)表達(dá)式.
()若拋物線形與關(guān)于軸對(duì)稱,求拋物線的函數(shù)表達(dá)式.
()在()的基礎(chǔ)上,設(shè)上的點(diǎn)、始終與上的點(diǎn)、分別關(guān)于軸對(duì)稱,是否存在點(diǎn)、(、分別位于拋物線對(duì)稱軸兩側(cè),且在的左側(cè)),使四邊形為正方形?
若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一枚質(zhì)地均勻的正二十面體形狀的骰子,其中的1個(gè)面標(biāo)有“1”,2個(gè)面標(biāo)有“2”,3個(gè)面標(biāo)有“3”,4個(gè)面標(biāo)有“4”,5個(gè)面標(biāo)有“5”,其余的面標(biāo)有“6”.將這枚骰子擲出后,求:
(1)“6”朝上的概率是多少?
(2)哪個(gè)數(shù)字朝上的概率最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把Rt△ABC放在直角坐標(biāo)系內(nèi),其中∠CAB=90°,BC=5,點(diǎn)A,B的坐標(biāo)分別為(1,0),(4,0),將△ABC沿x軸向右平移,當(dāng)點(diǎn)C落在直線y=2x-6上時(shí),線段BC掃過的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某百貨商店服裝柜在銷售中發(fā)現(xiàn):某品牌童裝每天可售出20件,每件盈利40元,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下,若每件童裝每降價(jià)1元,日銷售量將增加2件.
(1)當(dāng)每件童裝降價(jià)多少元時(shí),一天的盈利最多?
(2)若商場(chǎng)要求一天的盈利為1200元,同時(shí)又使顧客得到實(shí)惠,每件童裝降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正比例函數(shù)圖象經(jīng)過(﹣2,4).
(1)如果點(diǎn)(a,1)和(﹣1,b)在函數(shù)圖象上,求a,b的值;
(2)過圖象上一點(diǎn)P作y軸的垂線,垂足為Q,S△OPQ=,求Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAC=90°,AD⊥BC,垂足為D,則下面的結(jié)論中正確的個(gè)數(shù)為( 。
①AB與AC互相垂直;
②AD與AC互相垂直;
③點(diǎn)C到AB的垂線段是線段AB;
④線段AB的長(zhǎng)度是點(diǎn)B到AC的距離;
⑤線段AB是B點(diǎn)到AC的距離.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,C,D,E在Rt△MON的邊上,∠MON=90°,AE⊥AB且AE=AB,BC⊥CD且BC=CD,BH⊥ON于點(diǎn)H,DF⊥ON于點(diǎn)F,OM=12,OE=6,BH=3,DF=4,FN=8,圖中陰影部分的面積為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com