【題目】如圖,在ABC中,AB=AC,BAC=90°,點(diǎn)Ax軸上,點(diǎn)B的坐標(biāo)是(0,3),若點(diǎn)C恰好在反比例函數(shù)第一象限內(nèi)的圖象上,那么點(diǎn)C的坐標(biāo)為______________

【答案】

【解析】

CDx軸于D,由于∠BAC=90°,容易求證△ABO≌△CAD,利用全等三角形的性質(zhì)即可求出點(diǎn)C的坐標(biāo).

CDx軸于D

∵∠BAC=90°

∴∠BAO+CAD=90°,

又∠CAD+ACD=90°,

∴∠BAO=ACD

在△ABO與△CAD

∴△ABO≌△CADAAS

OB=AD

設(shè)OA=a

B0,3

OB=3

AD=3,

OD=a+3CD=OA=a,

Ca+3a

又∵點(diǎn)C在反比例函數(shù)

10=aa+3

解得:a=2a=-5(舍去),

a+3=5

C5,2

故答案為:(5,2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點(diǎn)為圖形上任意一點(diǎn),點(diǎn)為圖形上任意一點(diǎn),若點(diǎn)與點(diǎn)之間的距離始終滿足,則稱圖形與圖形相離.

1)已知點(diǎn)、、

①與直線相離的點(diǎn)是 ;

②若直線相離,求的取值范圍;

2)設(shè)直線、直線及直線圍成的圖形為,⊙的半徑為,圓心的坐標(biāo)為,直接寫出⊙與圖形相離的的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)的坐標(biāo)為,過點(diǎn)軸的垂線交直線于點(diǎn),以原點(diǎn)為圓心,的長(zhǎng)為半徑畫弧交軸正半軸于點(diǎn);再過點(diǎn)軸的垂線交直線于點(diǎn),以原點(diǎn)為圓心,的長(zhǎng)為半徑畫弧交軸正半軸于點(diǎn),...,按此做法進(jìn)行下去,則的長(zhǎng)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的平分線,是射線上一點(diǎn),.動(dòng)點(diǎn)從點(diǎn)出發(fā),以的速度沿水平向左作勻速運(yùn)動(dòng),與此同時(shí),動(dòng)點(diǎn)從點(diǎn)出發(fā),也以的速度沿豎直向上作勻速運(yùn)動(dòng).連接,交于點(diǎn).經(jīng)過、三點(diǎn)作圓,交于點(diǎn),連接、.設(shè)運(yùn)動(dòng)時(shí)間為,其中

1)求的值;

2)是否存在實(shí)數(shù),使得線段的長(zhǎng)度最大?若存在,求出的值;若不存在,說明理由.

3)求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地之間有一條筆直的公路,小明從甲地出發(fā)步行前往乙地,同時(shí)小亮從乙地出發(fā)騎自行車前往甲地,小亮到達(dá)甲地沒有停留,按原路原速返回,追上小明后兩人一起步行到乙地.如圖,線段OA表示小明與甲地的距離y1(米)與行走的時(shí)間x(分鐘)之間的函數(shù)關(guān)系:折線BCDA表示小亮與甲地的距離y2(米)與行走的時(shí)間x(分鐘)之間的函數(shù)關(guān)系.請(qǐng)根據(jù)圖象解答下列問題:

1)小明步行的速度是   /分鐘,小亮騎自行車的速度是   /分鐘;

2)線段OABC相交于點(diǎn)E,求點(diǎn)E坐標(biāo);

3)請(qǐng)直接寫出小亮從乙地出發(fā)到追上小明的過程中,與小明相距100米時(shí)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,滑翔運(yùn)動(dòng)員在空中測(cè)量某寺院標(biāo)志性高塔“云端塔”的高度,空中的點(diǎn)P距水平地面BE的距離為200米,從點(diǎn)P觀測(cè)塔頂A的俯角為33°,以相同高度繼續(xù)向前飛行120米到達(dá)點(diǎn)C,在C處觀測(cè)點(diǎn)A的俯角是60°,求這座塔AB的高度(結(jié)果精確到1米).(參考數(shù)據(jù):sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,ABC=60°BAD的平分線交CD于點(diǎn)E,交BC的延長(zhǎng)線于點(diǎn)F,連接DF

1)求證:ABF是等邊三角形;

2)若CDF=45°,CF=2,求AB的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓O的直徑AB垂直于弦CD于點(diǎn)E,連接CO并延長(zhǎng)交AD于點(diǎn)F,且CFAD

1)證明:點(diǎn)EOB的中點(diǎn);

2)若AB=8,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:矩形的邊,,點(diǎn)從點(diǎn)出發(fā)沿線段向點(diǎn)勻速運(yùn)動(dòng),點(diǎn)同時(shí)從點(diǎn)出發(fā)沿線段向點(diǎn)勻速運(yùn)動(dòng),速度均為,當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一個(gè)點(diǎn)也停止運(yùn)動(dòng).連接,以為對(duì)角線作正方形,連接,則的長(zhǎng)度為____

查看答案和解析>>

同步練習(xí)冊(cè)答案