【題目】如圖,在正方形ABCD中,E是邊AB上的一動點(不與點A、B重合),連接DE,點A關(guān)于直線DE的對稱點為F,連接EF并延長交BC于點G,連接DG,過點E作EH⊥DE交DG的延長線于點H,連接BH.
(1)求證:GF=GC;
(2)用等式表示線段BH與AE的數(shù)量關(guān)系,并證明.
科目:初中數(shù)學 來源: 題型:
【題目】小明家買了一輛小轎車,小明連續(xù)記錄了某一周每天行駛的路程:
星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 | |
路程(千米) |
請你用學過的知識解決下面的問題:
(1)請你估計小明家的轎車每月(按天計算)要行駛多少千米?
(2)已知每行駛千米需汽油升,汽油每升元,試用含、的代數(shù)式表示小明家每月的汽油費,此代數(shù)式為_______;
(3)設,,請你求出小明家一年(按個月計算)的汽油費用大約是多少元(精確到千元).(注:第(1)、(3)小題須寫出必要步驟)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P是等邊三角形ABC內(nèi)的一點,連接PA,PB,PC,以BP為邊作∠PBQ=60°,且BQ=BP,連接CQ.
(1) 觀察并猜想AP與CQ之間的大小關(guān)系,并證明你的結(jié)論;
(2) 若PA:PB:PC=3:4:5,連接PQ,試判斷△PQC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠準備翻建新的大門,廠門要求設計成軸對稱的拱形曲線.已知廠門的最大寬度AB=12m,最大高度OC=4m,工廠的運輸卡車的高度是3m,寬度是5.8m.現(xiàn)設計了兩種方案.方案一:建成拋物線形狀(如圖1);方案二:建成圓弧形狀(如圖2).為確保工廠的卡車在通過廠門時更安全,你認為應采用哪種設計方案?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是
A. “明天降雨的概率是80%”表示明天有80%的時間都在降雨
B. “拋一枚硬幣正面朝上的概率為”表示每拋2次就有一次正面朝上
C. “彩票中獎的概率為1%”表示買100張彩票肯定會中獎
D. “拋一枚正方體骰子,朝上的點數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的頻率穩(wěn)定在附近
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A、D在直線l的同側(cè).
(1)如圖1,在直線l上找一點C.使得線段AC+DC最。ㄕ埻ㄟ^畫圖指出點C的位置);
(2)如圖2,在直線l上取兩點B、E,恰好能使△ABC和△DCE均為等邊三角形.M、N分別是線段AC、BC上的動點,連結(jié)DN交AC于點G,連結(jié)EM交CD于點F.
①當點M、N分別是AC、BC的中點時,判斷線段EM與DN的數(shù)量關(guān)系,并說明理由;
②如圖3,若點M、N分別從點A和B開始沿AC和BC以相同的速度向點C勻速運動,當M、N與點C重合時運動停止,判斷在運動過程中線段GF與直線1的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,兩個全等的△ABC和△DEF中,∠ACB=∠DFE=90°,AB=DE,其中點B和點D重合,點F在BC上,將△DEF沿射線BC平移,設平移的距離為x,平移后的圖形與△ABC重合部分的面積為y,y關(guān)于x的函數(shù)圖象如圖2所示(其中0≤x≤m,m<x≤3,3<x≤4時,函數(shù)的解析式不同)
(1)填空:BC的長為_____;
(2)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD 是⊙O的內(nèi)接四邊形,∠ABC=2∠D,連接OA,OC,AC
(1)求∠OCA的度數(shù) (2)如果OEAC于F,且OC=, 求AC的長
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com