【題目】如圖,已知直線y=-x+2x、y軸分別交于點(diǎn)A和點(diǎn)B,另一直線y=kx+b(k≠0)經(jīng)過(guò)點(diǎn)C(1,0),且把△AOB分成兩部分.

(1)△AOB被分成的兩部分面積相等,kb的值;

(2)△AOB被分成的兩部分面積比為1∶5,kb的值.

【答案】(1)b=2,k=-2(2)

【解析】

(1)AOB被分成的兩部分面積相等,那么被分成的兩部分都應(yīng)該是三角形AOB的面積的一半,那么直線y=kx+b(k≠0)必過(guò)B點(diǎn),因此根據(jù)B,C兩點(diǎn)的函數(shù)關(guān)系式可得出,直線的函數(shù)式.

(2)若AOB被分成的兩部分面積比為1:5,那么被分成的兩部分中小三角形的面積就應(yīng)該是大三角形面積的,已知了直線過(guò)C點(diǎn),則小三角形的底邊是大三角形的OA邊的一半,故小三角形的高應(yīng)該是OB,即直線經(jīng)過(guò)的這點(diǎn)的縱坐標(biāo)應(yīng)該是.那么這點(diǎn)應(yīng)該在y軸和AB上,可分這兩種情況進(jìn)行計(jì)算,運(yùn)用待定系數(shù)法求函數(shù)的解析式.

(1)由題意知:直線y=kx+b(k≠0)必過(guò)C點(diǎn),

COA的中點(diǎn),

∴直線y=kx+b一定經(jīng)過(guò)點(diǎn)B,C,如圖(1)所示,

B,C的坐標(biāo)代入可得:

,

解得;

(2)SAOB×2×2=2,

∵△AOB被分成的兩部分面積比為1:5,那么直線y=kx+b(k≠0)與y軸或AB交點(diǎn)的縱坐標(biāo)就應(yīng)該是:2×2×,

①當(dāng)y=kx+b(k≠0)與直線y=x+2相交時(shí),交點(diǎn)為D,如圖(2)所示,

當(dāng)y=時(shí),直線y=x+2y=kx+b(k≠0)的交點(diǎn)D的橫坐標(biāo)就應(yīng)該是x+2=,

x=

即交點(diǎn)D的坐標(biāo)為(,),

又根據(jù)C點(diǎn)的坐標(biāo)為(1,0),可得:

,

②當(dāng)y=kx+b(k≠0)與y軸相交時(shí),交點(diǎn)為E,如圖(3)所示,

∴交點(diǎn)E的坐標(biāo)就應(yīng)該是(0,),又有C點(diǎn)的坐標(biāo)(1,0),可得:

,

因此:k=2,b=2k=,b=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED,若ED=EC.

(1)求證:AB=AC;
(2)若AB=4,BC=2 ,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,將BD向兩個(gè)方向延長(zhǎng),分別至點(diǎn)E和點(diǎn)F,且使BE=DF.

(1)求證:四邊形AECF是菱形;

(2)若AC=4,BE=1,直接寫(xiě)出菱形AECF的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù)。
阿基米德(Archimedes,公元前287~公元前212年,古希臘)是有史以來(lái)最偉大的數(shù)學(xué)家之一.

阿基米德折弦定理:如圖1,AB和BC是圓O的兩條弦(即折線ABC是圓的一條折弦), BC>AB,M是 的中點(diǎn),即CD=AB+BD。下面是運(yùn)用“截長(zhǎng)法”證明CD=AB+BD的部分過(guò)程。
證明:如圖2,在CB上截取CG=AB,連接MA、MB、MC、MG。因?yàn)镸是弧ABC的中點(diǎn),所以MA=MC.
任務(wù):
(1)請(qǐng)按照上面的證明思路,完整證明阿基米德折弦定理,即CD=AB+BD。
(2)如圖3,已知等邊△ABC內(nèi)接于圓O,AB=1,D為 上一點(diǎn),∠ABD=45°,AE⊥BD于點(diǎn)E,則△BDC的周長(zhǎng)是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線 軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)B的坐標(biāo)為(3,0),與 軸交于點(diǎn)C(0,-3),頂點(diǎn)為D。

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo)。
(2)聯(lián)結(jié)AC,BC,求∠ACB的正切值。
(3)點(diǎn)P是x軸上一點(diǎn),是否存在點(diǎn)P使得△PBD與△CAB相似,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
(4)M是拋物線上一點(diǎn),點(diǎn)N在 軸,是否存在點(diǎn)N,使得以點(diǎn)A,C,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一慢車和一快車沿相同路線從A地到B,所行駛的路程與時(shí)間的函數(shù)圖象如圖所示,試根據(jù)圖象回答下列問(wèn)題:

(1)由圖象你可以得到哪些信息?

(2)求慢車快車的速度.

(3)A,B兩地之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△BAD是由△BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.

(1)求證:△BDE≌△BCE;
(2)試判斷四邊形ABED的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】仔細(xì)閱讀下面的例題:

例題:已知二次三項(xiàng)式x2-4x+m有一個(gè)因式是x+3,求另一個(gè)因式以及m的值.

解:設(shè)另一個(gè)因式為x+n,

x2-4x+m=(x+3)(x+n),

∴x2-4x+m=x2+(n+3)x+3n,

,解得,

∴另一個(gè)因式為x-7,m的值為-21.

問(wèn)題:仿照以上方法解答下面的問(wèn)題:

已知二次三項(xiàng)式2x2+3x-k有一個(gè)因式是2x-5,求另一個(gè)因式以及k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別是邊BC,AB上的中點(diǎn),連接DE并延長(zhǎng)至點(diǎn)F,使EF=2DF,連接CE、AF.

(1)證明:AF=CE;

(2)當(dāng)∠B=30°時(shí),試判斷四邊形ACEF的形狀并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案