已知:正方形ABCD的邊長為a,P是邊CD上一個動點不與C、D重合,CP=b,以CP為一邊在正方形ABCD外作正方形PCEF,連接BF、DF.

觀察計算:
(1)如圖1,當a=4,b=1時,四邊形ABFD的面積為______;
(2)如圖2,當a=4,b=2時,四邊形ABFD的面積為______;
(3)如圖3,當a=4,b=3時,四邊形ABFD的面積為______;
探索發(fā)現(xiàn):
(4)根據(jù)上述計算的結果,你認為四邊形ABFD的面積與正方形ABCD的面積之間有怎樣的關系?證明你的結論;
綜合應用:
(5)農民趙大伯有一塊正方形的土地(如圖5),由于修路被占去一塊三角形的地方△BCE,但決定在DE的右側補給趙大伯一塊土地,補償后的土地為四邊形ABMD,且四邊形ABMD的面積與原來正方形土地的面積相等,M、E、B三點要在一條直線上,請你畫圖說明,如何確定M點的位置.
【答案】分析:四邊形ABFD的面積=梯形CDFE的面積+正方形ABCD的面積-△BFE的面積(1),(2),(3)直接把相關數(shù)值代入即可求解;
(4)由(1),(2),(3)可推斷出一般結論:四邊形ABFD的面積=正方形ABCD的面積;利用同底等高的三角形的面積相等,可得S△BCD=S△BDF,那么可求得結論;
(5)仿照前面得到的結論,利用正方形的對角線平分一組對角的性質作出大正方形外部,小正方形一個內角的平分線,與BE的交點即為點M.
解答:解:(1)4×4+(1+4)×1÷2-1×5÷2=16;
(2)4×4+(2+4)×2÷2-2×6÷2=16;
(3)4×4+(3+4)×3÷2-3×7÷2=16;
(4)無論點P在CD邊上的什么位置,四邊形ABFD的面積與正方形ABCD的面積相等,與正方形PCEF的邊長無關.
證明:連接BD,CF,

∵四邊形ABCD是正方形,
∴∠DBC=45°,
同理∠FCE=45°,
∴BD∥CF,
∴S△BCD=S△BDF,
∴四邊形ABFD的面積與正方形ABCD的面積相等;
(5)如圖5,作BC的延長線CN,作∠DCN的角平分線交BE的延長線于點M,則四邊形ABMD的面積與正方形ABCD的面積相等,點M即為所求.

點評:本題考查的知識點為:兩條平行線間的距離相等;同底等高的三角形的面積相等;由具體到一般再到應用是數(shù)學真正的作用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知:正方形ABCD邊長為1,E、F、G、H分別為各邊上的點,且AE=BF=CG=DH,設小正方形EFGH的面積為s,AE為x,則s關于x的函數(shù)圖象大致是(  )
A、精英家教網B、精英家教網C、精英家教網D、精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、(1)如圖,已知在正方形ABCD中,M是AB的中點,E是AB延長線上一點,MN⊥DM且交∠CBE的平分線于N.試判定線段MD與MN的大小關系;
(2)若將上述條件中的“M是AB的中點”改為“M是AB上或AB延長線上任意一點”,其余條件不變.試問(1)中的結論還成立嗎?如果成立,請證明;如果不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:正方形ABCD邊長為4cm,E,F(xiàn)分別為CD,BC的中點,動點P在線段AB上從B?A以2cm/精英家教網s的速度運動,同時動點Q在線段FC上從F?C以1cm/s的速度運動,動點G在PC上,且∠EGC=∠EQC,連接PD.設運動時間為t秒.
(1)求證:△CQE∽△APD;
(2)問:在運動過程中CG•CP的值是否發(fā)生改變?如果不變,請求這個值;若改變,請說明理由;
(3)當t為何值時,△CGE為等腰三角形并求出此時△CGE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖,已知在正方形ABCD中,P是BC上的一點,且AP=DP.求證:P是BC中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=
6
.下列結論:
①△APD≌△AEB﹔②點B到直線AE的距離為
3
﹔③EB⊥ED﹔④S△APD+S△APB=0.5+
2

其中正確結論的序號是(  )

查看答案和解析>>

同步練習冊答案