【題目】如圖,AB為⊙O的直徑,PD切⊙O于點C,交AB的延長線于點D,且∠D=2∠CAD.
(1)求∠D的度數(shù);
(2)若CD=2,求BD的長.
【答案】(1)45°;(2).
【解析】試題(1)根據(jù)等腰三角形性質(zhì)和三角形外角性質(zhì)求出∠COD=2∠A,求出∠D=∠COD,根據(jù)切線性質(zhì)求出∠OCD=90°,即可求出答案;
(2)求出OC=CD=2,根據(jù)勾股定理求出BD即可.
試題解析:(1)∵OA=OC,
∴∠A=∠ACO,
∴∠COD=∠A+∠ACO=2∠A,
∵∠D=2∠A,
∴∠D=∠COD,
∵PD切⊙O于C,
∴∠OCD=90°,
∴∠D=∠COD=45°;
(2)∵∠D=∠COD,CD=2,
∴OC=OB=CD=2,
在Rt△OCD中,由勾股定理得:22+22=(2+BD)2,
解得:BD=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以點P(-1,0)為圓心的圓,交x軸于B、C兩點(B在C的左側(cè)),交y軸于A、D兩點(A在D的下方),AD=,將△ABC繞點P旋轉(zhuǎn)180°,得到△MCB.
(1)求B、C兩點的坐標;
(2)請在圖中畫出線段MB、MC,并判斷四邊形ACMB的形狀(不必證明),求出點M的坐標;
(3)動直線l從與BM重合的位置開始繞點B順時針旋轉(zhuǎn),到與BC重合時停止,設(shè)直線l與CM交點為E,點Q為BE的中點,過點E作EG⊥BC于G,連接MQ、QG.請問在旋轉(zhuǎn)過程中∠MQG的大小是否變化?若不變,求出∠MQG的度數(shù);若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,AD是△ABC的角平分線,點O為AB的中點,連接DO并延長到點E,使OE=OD,連接AE,BE.
(1)求證:四邊形AEBD是矩形;
(2)當△ABC滿足什么條件時,矩形AEBD是正方形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB=BD,AC=CE,DC、BE交于點F,∠ABD=∠ACE=60°.
(1)求證:BE=CD;
(2)求∠A+∠ABF+∠ACF的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
如圖,把沿直線平行移動線段的長度,可以變到的位置;
如圖,以為軸,把翻折,可以變到的位置;
如圖,以點為中心,把旋轉(zhuǎn),可以變到的位置.
像這樣,其中一個三角形是由另一個三角形按平行移動、翻折、旋轉(zhuǎn)等方法變成的.這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.
回答下列問題:
①在圖中,可以通過平行移動、翻折、旋轉(zhuǎn)中的哪一種方法怎樣變化,使變到的位置;
②指圖中線段與之間的關(guān)系,為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有、、三個居民小區(qū)的位置成三角形,現(xiàn)決定在三個小區(qū)之間修建一個購物超市,使超市到三個小區(qū)的距離相等,則超市應(yīng)建在( )
A.在∠A、∠B兩內(nèi)角平分線的交點處
B.在AC、BC兩邊垂直平分線的交點處
C.在AC、BC兩邊高線的交點處
D.在AC、BC兩邊中線的交點處
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校計劃組織師生共300人參加一次大型公益活動,如果租用6輛大客車和5輛小客車,恰好全部坐滿,已知每輛大客車的乘客座位數(shù)比小客車多17個.
(1)求每輛大客車和每輛小客車的乘客座位數(shù);
(2)由于最后參加活動的人數(shù)增加了30人,學校決定調(diào)整租車方案,在保持租用車輛總數(shù)不變的情況下,且所有參加活動的師生都有座位,求租用小客車數(shù)量的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為元,試銷過程中發(fā)現(xiàn),每月銷售量(萬件)與銷售單價(元)之間的關(guān)系可以近似地看作一次函數(shù).(利潤售價-制造成本)
寫出每月的利潤(萬元)與銷售單價(元)之間的函數(shù)關(guān)系式;
當銷售單價為多少元時,廠商每月獲得的利潤為萬元?
如果廠商每月的制造成本不超過萬元,那么當銷售單價為多少元時,廠商每月獲得的利潤最大?最大利潤為多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com